[发明专利]基于强化学习和双线性卷积网络的车型识别方法有效
| 申请号: | 201911371980.5 | 申请日: | 2019-12-27 |
| 公开(公告)号: | CN111079851B | 公开(公告)日: | 2020-09-18 |
| 发明(设计)人: | 钟珊;陈雪梅;应文豪;伏玉琛;闫海英 | 申请(专利权)人: | 常熟理工学院 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/08;G06N3/04 |
| 代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 张俊范 |
| 地址: | 215500 江*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于强化学习和双线性卷积网络的车型识别方法,构建深度网络模型,设置细粒度分类网络的超参数并初始化网络;建立优化显著性特征的马尔科夫决策模型;对数据集进行尺度变换;优化注意力区域:在细粒度分类网络参数固定的情况下,将数据集输入细粒度分类网络,并采用强化学习算法优化显著性区域,选择最优的注意力区域;建立对细粒度分类网络参数进行更新的损失函数;融合特征后重复训练网络直到注意力区域不再变化为止;采用需要测试的车型图像输入到训练完成的模型中,获得相应的检测结果。本发明利用强化学习网络来提取底层的显著性特征,并通过双线性插值法来对高层语义特征和低层的显著性特征进行融合提高识别准确率。 | ||
| 搜索关键词: | 基于 强化 学习 双线 卷积 网络 车型 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于常熟理工学院,未经常熟理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911371980.5/,转载请声明来源钻瓜专利网。





