[发明专利]一种基于卷积神经网络的油气藏储层表征方法在审
申请号: | 201910711955.0 | 申请日: | 2019-08-02 |
公开(公告)号: | CN110389382A | 公开(公告)日: | 2019-10-29 |
发明(设计)人: | 徐朝晖;方惠京;孙盼科;徐怀民 | 申请(专利权)人: | 中国石油大学(北京) |
主分类号: | G01V1/30 | 分类号: | G01V1/30;G01V1/36;G06N3/04;G06N3/08 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 张春辉 |
地址: | 102299*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请公开了一种基于卷积神经网络的油气藏储层表征方法、装置、设备及可读存储介质,方案包括:获取地震道数据;截取预设级次沉积旋回对应的地震道数据;将截取得到的地震道数据输入预先经过训练的卷积神经网络,得到高频合成记录;根据高频合成记录,确定小尺度地质体的分布规律以实现精确的储层表征。由于卷积神经网络提高地震资料的频率的幅度大,而且卷积神经网络具备自动学习能力,因此该方案频率提高幅度大、处理准确性高、处理效率高。此外,该方案针对不同沉积旋回差异较大的问题,截取预设级次沉积旋回的地震道数据以作为输入,针对性更强,进一步提升了高频处理的准确性,最终提升了油气藏开发效率。 | ||
搜索关键词: | 卷积神经网络 地震道数据 截取 沉积 油气藏 预设 合成 可读存储介质 油气藏开发 处理效率 地震资料 分布规律 高频处理 自动学习 地质体 小尺度 记录 申请 | ||
【主权项】:
1.一种基于卷积神经网络的油气藏储层表征方法,其特征在于,包括:获取地震道数据;截取预设级次沉积旋回对应的地震道数据;将截取得到的地震道数据输入预先经过训练的卷积神经网络,得到高频合成记录;根据所述高频合成记录,确定小尺度地质体的分布规律以实现储层表征。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(北京),未经中国石油大学(北京)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910711955.0/,转载请声明来源钻瓜专利网。