[发明专利]一种肺结节图像检测方法、模型训练方法、装置及存储介质有效
申请号: | 201910374504.2 | 申请日: | 2019-05-06 |
公开(公告)号: | CN110084810B | 公开(公告)日: | 2021-11-05 |
发明(设计)人: | 王杰 | 申请(专利权)人: | 成都医云科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06N3/04 |
代理公司: | 北京超凡宏宇专利代理事务所(特殊普通合伙) 11463 | 代理人: | 崔振 |
地址: | 610000 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种肺结节图像检测方法、模型训练方法、装置及存储介质,涉及医学影像处理领域。该肺结节图像检测的模型训练方法包括:通过卷积网络对CT肺结节数据进行预处理,获取肺结节特征图像;通过Xception网络结构获取肺结节特征图像的三维特征数据;堆叠肺结节特征图像的三维特征数据,获取第一四维特征;对第一四维特征进行三维卷积核处理,获取第二四维特征;根据第二四维特征,计算类别概率;类别概率是每个像素点为肺结节的几率;当类别概率满足模型的收敛条件时,获得已训练的肺结节图像检测模型。采用二维卷积+三维卷积核处理的架构,提高了计算效率,降低了对硬件资源的要求。 | ||
搜索关键词: | 一种 结节 图像 检测 方法 模型 训练 装置 存储 介质 | ||
【主权项】:
1.一种肺结节图像检测的模型训练方法,其特征在于,所述方法包括:通过卷积网络对CT肺结节数据进行预处理,获取肺结节特征图像;通过Xception网络结构获取所述肺结节特征图像的三维特征数据;堆叠所述肺结节特征图像的三维特征数据,获取第一四维特征;对所述第一四维特征进行三维卷积核处理,获取第二四维特征;根据所述第二四维特征,计算类别概率;所述类别概率是每个像素点为肺结节的几率;当所述类别概率满足模型的收敛条件时,获得已训练的肺结节图像检测模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都医云科技有限公司,未经成都医云科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910374504.2/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序