[发明专利]一种基于大数据极限学习的学生行为分析方法及装置有效
申请号: | 201910295218.7 | 申请日: | 2019-04-12 |
公开(公告)号: | CN110084291B | 公开(公告)日: | 2021-10-22 |
发明(设计)人: | 王春枝;卞文硕;施肖肖;胡明威;汤远志 | 申请(专利权)人: | 湖北工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06Q50/20 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 罗飞 |
地址: | 430068 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于大数据极限学习的学生行为分析方法及装置,其中的方法通过采集学生的信息;采用K—means聚类算法将相同族类聚集在一起形成集合;采用简单交叉验证把数据集划分为训练集与测试集;在相同数据集合内对数据进行相对影响较大、较小划分;采用不平衡模糊加权极限学习机方法对学生数据进行分析预测;根据预测结果得出学生行动轨迹数据。本发明提供了一种预测精准较高、较为全面分析学生行为轨迹的极限学习机方法。通过预测结果分析可清楚了解学生行为轨迹对学生学习、生活的影响并对异常行为予以规划。 | ||
搜索关键词: | 一种 基于 数据 极限 学习 学生 行为 分析 方法 装置 | ||
【主权项】:
1.一种基于大数据极限学习的学生行为分析方法,其特征在于,包括:步骤S1:采集学生的身份信息和行为信息;步骤S2:采用K‑means聚类算法对采集的身份信息和行为信息进行聚类,划分为不同的族类;步骤S3:对于每一个族类中的数据,根据其对预测结果的影响情况分为大量数据集与小量数据集,其中,大量数据集中的数据对预测结果影响较大,大量数据集的数据对预测结果影响较小;步骤S4:在不同族类将数据按照预设比例划分为训练集、测试集与预测集;步骤S5:利用训练集、测试集对划分的大量数据集与小量数据集进行不平衡模糊加权的极限学习机学习,得出极限学习机数据模型,再利用预测集进行预测验证;步骤S6:利用极限学习机数据模型进行学生行为分析,输出分析预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖北工业大学,未经湖北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910295218.7/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置