[发明专利]一种基于深度神经网络的设备健康状况评估方法和装置在审

专利信息
申请号: 201910150890.7 申请日: 2019-02-28
公开(公告)号: CN109829538A 公开(公告)日: 2019-05-31
发明(设计)人: 崔妍;黄立军;陈世均;陈捷飞;江虹;张圣;韩阳 申请(专利权)人: 苏州热工研究院有限公司;中国广核集团有限公司;中国广核电力股份有限公司
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G01M99/00
代理公司: 深圳市顺天达专利商标代理有限公司 44217 代理人: 郭伟刚
地址: 215004 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度神经网络的设备健康状况评估方法和装置。所述方法包括:将待测设备模拟运行在不同的工作状态下,并获取不同工作状态下对应的振动频域信号;随机选取预设数量的振动频域信号作为样本数据,并采用DAE算法,来训练预设的深度神经网络;采用训练好的深度神经网络,来评估待测设备的健康状态。本发明提供的方法,结合设备大数据的特点与深度神经网络的优势,可以同时完成设备大数据故障特征自适应提取和设备健康状况的识别,还可以自适应地提取健康状况信号频谱中蕴含的故障信息,取得了较高的设备健康评估精度,更能表征设备数据内部隐藏的复杂多变的特性,在面对复杂的监测诊断任务时,可以更准备地识别设备健康状况。
搜索关键词: 神经网络 健康状况 健康状况评估 方法和装置 待测设备 频域信号 大数据 自适应 预设 表征设备 故障特征 故障信息 健康评估 健康状态 结合设备 模拟运行 识别设备 随机选取 信号频谱 样本数据 算法 诊断 监测 评估
【主权项】:
1.一种基于深度神经网络的设备健康状况评估方法,其特征在于,所述方法包括:将待测设备模拟运行在不同的工作状态下,并获取不同工作状态下对应的振动频域信号;随机选取预设数量的振动频域信号作为样本数据,并采用DAE算法,来训练预设的深度神经网络;采用训练好的深度神经网络,来评估待测设备的健康状态。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州热工研究院有限公司;中国广核集团有限公司;中国广核电力股份有限公司,未经苏州热工研究院有限公司;中国广核集团有限公司;中国广核电力股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910150890.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top