[发明专利]一种基于卷积神经网络的图像超分辨率重建方法有效
申请号: | 201910149271.6 | 申请日: | 2019-02-28 |
公开(公告)号: | CN109903228B | 公开(公告)日: | 2023-03-24 |
发明(设计)人: | 詹曙;朱磊磊;臧怀娟 | 申请(专利权)人: | 合肥工业大学 |
主分类号: | G06T3/40 | 分类号: | G06T3/40;G06N3/0464 |
代理公司: | 安徽合肥华信知识产权代理有限公司 34112 | 代理人: | 余成俊 |
地址: | 230009 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于卷积神经网络的图像超分辨率重建方法,该方法使用两层卷积层提取浅层特征,使用多个U型网络进行多尺度的特征提取与融合,使用残差通道注意力机制有效增强有用特征,抑制噪声,使用一层卷积层完成图像最终的重建,使用图像训练集对网络进行端到端训练并保存模型参数供测试使用。本发明显著提高了图像重建质量,在不提高硬件成本的条件下提高了图像的分辨率。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 图像 分辨率 重建 方法 | ||
【主权项】:
1.一种基于卷积神经网络的图像超分辨率重建方法,其特征在于,构建一个包括浅层特征提取模块、多个U型网络模块、基于残差通道注意力的特征融合模块和重建模块的网络模型,将低分辨率图片输入到所述网络模型,得到低分辨率图片对应的高分辨率图片;其具体步骤如下:(1)、采用浅层特征提取模块进行浅层特征提取对于输入的低分辨率图像ILR,使用3×3的卷积层提取浅层特征,为使模型紧凑,再使用1×1的卷积层压缩通道数量,经过非线性激活单元得到浅层特征图F0,由以下等式给定:F0=fconv(ILR) (1)其中fconv代表浅层特征提取模块;(2)、得到浅层特征图F0后,将其作为U型网络模块的输入,每个U型网络模块均包含两个阶段,阶段一为对输入的特征图执行卷积核大小为3,步长为2的卷积操作,每执行一次,特征图的大小缩减为之前的1/4,连续执行两次此操作,此时特征图为输入特征图大小的1/16,此阶段也称为编码阶段;编码阶段输出的特征图作为第二阶段的输入,阶段二采用卷积核为6,步长为2的转置卷积操作,每执行一次,特征图的大小扩大为之前的4倍,连续执行两次此操作,此时特征图扩大为之前的16倍,此阶段也称为解码阶段,编码阶段的特征与解码阶段特征通道跳连接方式进行融合,有利于信息传递及反向传播参数的更新;堆叠多个U型网络已达到多次自下而上和自上而下的多尺度特征提取,多尺度特征的提取有利于图像超分辨率重建;使用Fn代表第n个U型网络的输出(n>0),则Fn可以用以下等式得到:Fn=Un([F0,C(F1),…,C(Fn‑1)]) (2)其中Un代表第n个U型网络,C代表压缩模块,为1×1的卷积层用于压缩通道数量,[F0,C(F1),…,C(Fn‑1)]代表特征在通道维度上的连接;(3)、对于多个U型网络的输出,因为每个通道的信息量不同,为便于网络重建,使用残差通道注意力机制,对每个通道学习一个对应的权值,通道特征与权值相乘后与原特征图相加,达到增强有用特征,削弱无用特征及噪声的目的;通过以下等式描述:rn=sc×Fn+Fn (3)其中sc代表通道注意力模块得到的权值,rn为残差通道注意力模块的输出;(4)、在通道维度上连接得到的多个残差通道注意力模块输出rn,使用3×3的卷积层完成图像的重建;Isr=Fconv([r1,…,rn]) (4)其中Isr代表重建图像,Fconv代表3×3的卷积层;(5)、给定训练集
y(i)为真实高分辨率原图像,采用平均绝对误差作为损失函数,通过下式描述:
(6)、使用Adam优化算法,经多轮迭代更新参数至网络收敛,保留其参数供测试使用;(7)、已知有一张低分辨率图像,将低分辨率图像输入进步骤(6)中已训练的网络中,由卷积神经网络输出重建的高分辨率图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910149271.6/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序