[发明专利]一种基于卷积神经网络的单帧图像连续尺度超分辨率方法有效
申请号: | 201910077583.0 | 申请日: | 2019-01-26 |
公开(公告)号: | CN109816592B | 公开(公告)日: | 2022-05-13 |
发明(设计)人: | 牛玉贞;林家祺;翁涵梅;施逸青 | 申请(专利权)人: | 福州大学 |
主分类号: | G06T3/40 | 分类号: | G06T3/40 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 蔡学俊 |
地址: | 350108 福建省福州市闽*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于卷积神经网络的单帧图像连续尺度超分辨率方法。首先,输入待超分辨率的低分辨率图像和放大尺度因子t;其次,根据输入的放大尺度因子确定其对应的最优整数放大尺度因子s,利用双三次插值算法将输入的低分辨率图像放大s倍;再而,利用现有的基于卷积神经网络的超分辨率算法的网络模型,放大图像进行特征提取及重建,得到放大了s倍的高分辨率图像;最后,对得到的高分辨率图像,使用双三次插值缩放至目标分辨率,得到最终的放大了t倍的高分辨率图像。本发明能够有效地提高已有基于卷积神经网络的超分辨率算法在连续放大尺度超分辨率上的性能,可应用于图像处理、计算机视觉等领域。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 图像 连续 尺度 分辨率 方法 | ||
【主权项】:
1.一种基于卷积神经网络的单帧图像连续尺度超分辨率方法,其特征在于,包括如下步骤:步骤S1、输入待超分辨率的低分辨率图像和放大尺度因子t,低分辨率图像的大小为h×w;步骤S2、根据输入的放大尺度因子t确定其对应的最优整数放大尺度因子s,利用双三次插值算法将输入的低分辨率图像放大s倍,得到放大图像;步骤S3、利用基于卷积神经网络的超分辨率算法的网络模型,对由步骤S2得到的放大图像进行特征提取及重建,得到放大s倍的高分辨率图像;步骤S4、对由步骤S3得到的高分辨率图像,使用双三次插值缩放至目标分辨率,最终得到的放大t倍的高分辨率图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910077583.0/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序