[发明专利]一种基于卷积神经网络的单帧图像连续尺度超分辨率方法有效

专利信息
申请号: 201910077583.0 申请日: 2019-01-26
公开(公告)号: CN109816592B 公开(公告)日: 2022-05-13
发明(设计)人: 牛玉贞;林家祺;翁涵梅;施逸青 申请(专利权)人: 福州大学
主分类号: G06T3/40 分类号: G06T3/40
代理公司: 福州元创专利商标代理有限公司 35100 代理人: 蔡学俊
地址: 350108 福建省福州市闽*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于卷积神经网络的单帧图像连续尺度超分辨率方法。首先,输入待超分辨率的低分辨率图像和放大尺度因子t;其次,根据输入的放大尺度因子确定其对应的最优整数放大尺度因子s,利用双三次插值算法将输入的低分辨率图像放大s倍;再而,利用现有的基于卷积神经网络的超分辨率算法的网络模型,放大图像进行特征提取及重建,得到放大了s倍的高分辨率图像;最后,对得到的高分辨率图像,使用双三次插值缩放至目标分辨率,得到最终的放大了t倍的高分辨率图像。本发明能够有效地提高已有基于卷积神经网络的超分辨率算法在连续放大尺度超分辨率上的性能,可应用于图像处理、计算机视觉等领域。
搜索关键词: 一种 基于 卷积 神经网络 图像 连续 尺度 分辨率 方法
【主权项】:
1.一种基于卷积神经网络的单帧图像连续尺度超分辨率方法,其特征在于,包括如下步骤:步骤S1、输入待超分辨率的低分辨率图像和放大尺度因子t,低分辨率图像的大小为h×w;步骤S2、根据输入的放大尺度因子t确定其对应的最优整数放大尺度因子s,利用双三次插值算法将输入的低分辨率图像放大s倍,得到放大图像;步骤S3、利用基于卷积神经网络的超分辨率算法的网络模型,对由步骤S2得到的放大图像进行特征提取及重建,得到放大s倍的高分辨率图像;步骤S4、对由步骤S3得到的高分辨率图像,使用双三次插值缩放至目标分辨率,最终得到的放大t倍的高分辨率图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910077583.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top