[发明专利]一种基于ACGAN的极化SAR图像分类方法在审
申请号: | 201910036806.9 | 申请日: | 2019-01-15 |
公开(公告)号: | CN109784401A | 公开(公告)日: | 2019-05-21 |
发明(设计)人: | 侯彪;焦李成;聂惠敏;马晶晶;马文萍;白静 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 高博 |
地址: | 710071 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于ACGAN的极化SAR图像分类方法,对极化散射矩阵进行Pauli分解,构建基于像素点的特征矩阵;然后将特征矩阵中的每个元素用其邻域的图像块进行替换,获取基于图像块的特征矩阵;再利用基于图像块的特征矩阵构造训练数据集,使用训练数据集对ACGAN网络模型进行训练,得到像素级的分类结果;最后将特征矩阵转化为RGB伪彩色图,利用SLIC超像素算法将图像划分为K个超像素区域;结合像素级分类结果和超像素块,优化最终分类结果。本发明充分利用了极化SAR数据的极化散射信息和空间邻域信息,并利用带有辅助分类器的生成对抗网络相互竞争对抗训练,使得分类器能更有效的提取分类特征,获得较高的分类精度。 | ||
搜索关键词: | 特征矩阵 分类结果 极化SAR 图像块 训练数据集 图像分类 分类器 像素级 极化散射矩阵 空间邻域信息 对抗训练 分类特征 散射信息 网络模型 伪彩色图 像素区域 像素点 像素块 再利用 极化 构建 邻域 算法 像素 替换 图像 分解 对抗 分类 转化 优化 网络 | ||
【主权项】:
1.一种基于ACGAN的极化SAR图像分类方法,其特征在于,对极化散射矩阵S进行Pauli分解,构建基于像素点的特征矩阵F;然后将特征矩阵F中的每个元素用其邻域的图像块进行替换,获取基于图像块的特征矩阵F1;再利用基于图像块的特征矩阵F1构造训练数据集T,使用训练数据集T对ACGAN网络模型进行训练,将数据集F1输入训练好的模型,得到像素级的分类结果;最后将特征矩阵F转化为RGB伪彩色图,利用SLIC超像素算法将图像划分为K个超像素区域;结合像素级分类结果和超像素块,优化最终分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910036806.9/,转载请声明来源钻瓜专利网。