[发明专利]一种移动端花卉识别模型的构建方法有效
申请号: | 201811621118.0 | 申请日: | 2018-12-28 |
公开(公告)号: | CN109766800B | 公开(公告)日: | 2022-09-30 |
发明(设计)人: | 李国刚;陈浩 | 申请(专利权)人: | 华侨大学 |
主分类号: | G06V20/00 | 分类号: | G06V20/00;G06V10/774;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 厦门市首创君合专利事务所有限公司 35204 | 代理人: | 张松亭;林燕玲 |
地址: | 362000 福建省*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种移动端花卉识别模型的构建方法,包括如下步骤:S10、创建一个ImageNet数据集训练好的浮点类型的卷积神经网络模型;S20、添加量化运算,即在原始的浮点计算模型中的权重读取和激活输出后插入模拟量化操作;S30、用花卉数据集训练该卷积神经网络模型,直到模型收敛;S40、将浮点模型转化为8‑bit整数运算模型,得到花卉识别模型;S50、使用Bazel构建工具将该花卉识别模型编译成APK安装包。本发明将用于移动端花卉识别的浮点运算卷积神经网络转化为高效8‑bit整数运算卷积神经网络,减小模型大小的同时缩短模型预测时间,而精度下降却非常低。 | ||
搜索关键词: | 一种 移动 花卉 识别 模型 构建 方法 | ||
【主权项】:
1.一种移动端花卉识别模型的构建方法,其特征在于,包括如下步骤:S10、创建一个ImageNet数据集训练好的浮点类型的卷积神经网络模型;S20、添加量化运算,即在原始的浮点计算模型中的权重读取和激活输出后插入模拟量化操作;S30、用花卉数据集训练该卷积神经网络模型,直到模型收敛;S40、将浮点模型转化为8‑bit整数运算模型,得到花卉识别模型;S50、使用Bazel构建工具将该花卉识别模型编译成APK安装包。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华侨大学,未经华侨大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811621118.0/,转载请声明来源钻瓜专利网。