[发明专利]一种甲状腺锝扫图像的识别模型构建方法及装置在审
申请号: | 201811599551.9 | 申请日: | 2018-12-26 |
公开(公告)号: | CN109685143A | 公开(公告)日: | 2019-04-26 |
发明(设计)人: | 李丹;赵继胜;吕中伟;叶萌;孙明;蔡海东 | 申请(专利权)人: | 上海市第十人民医院 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04 |
代理公司: | 北京超凡志成知识产权代理事务所(普通合伙) 11371 | 代理人: | 吴迪 |
地址: | 200072 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例提供一种甲状腺锝扫图像的识别模型构建方法及装置。方法包括:获取多张甲状腺锝扫图像并对每张锝扫图像进行标注,获得对应的类型标签;将一张标注后的甲状腺锝扫图像输入深度卷积神经网络AlexNet中输出预测结果,根据预测结果和标注后的甲状腺锝扫图像的类型标签计算损失值,并利用损失值对AlexNet中的参数进行优化;重新获取一张标注后的甲状腺锝扫图像输入到优化后的AlexNet,并对优化后的AlexNet进行再次训练,直至达到停止训练的条件为止获得识别模型。装置用于执行上述方法。本发明实施例通过构建识别模型能够实现对待识别锝扫图像进行识别,从而辅助人工识别,提高了阅片的效率及准确率。 | ||
搜索关键词: | 甲状腺 图像 标注 模型构建 图像输入 标签 优化 卷积神经网络 辅助人工 输出预测 预测结果 重新获取 准确率 构建 阅片 | ||
【主权项】:
1.一种甲状腺锝扫图像的识别模型构建方法,其特征在于,包括:获取多张甲状腺锝扫图像,并对每张锝扫图像进行标注,获得对应的类型标签;将一张标注后的甲状腺锝扫图像输入深度卷积神经网络AlexNet中,所述AlexNet输出预测结果,根据所述预测结果和所述标注后的甲状腺锝扫图像的类型标签计算损失值,并利用所述损失值对所述AlexNet中的参数进行优化;重新获取一张标注后的甲状腺锝扫图像输入到优化后的AlexNet,并对优化后的AlexNet进行再次训练,直至达到停止训练的条件为止,获得识别模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海市第十人民医院,未经上海市第十人民医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811599551.9/,转载请声明来源钻瓜专利网。
- 上一篇:一种图像匹配方法及装置
- 下一篇:一种对视频模型做评估的方法、装置及电子设备
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序