[发明专利]一种面向威胁情报的实体识别方法及系统在审

专利信息
申请号: 201811589770.9 申请日: 2018-12-25
公开(公告)号: CN109858018A 公开(公告)日: 2019-06-07
发明(设计)人: 王璐;姜波;杜翔宇;姜政伟;卢志刚 申请(专利权)人: 中国科学院信息工程研究所
主分类号: G06F17/27 分类号: G06F17/27
代理公司: 北京君尚知识产权代理事务所(普通合伙) 11200 代理人: 邱晓锋
地址: 100093 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种面向威胁情报的实体识别方法及系统。该方法包括:1)对作为训练语料的威胁情报文本进行粗分词;2)构建威胁情报实体常用词词典库与规则库,对粗分词的结果进行词典匹配与规则匹配;3)基于匹配结果,为每个词标注实体标签,形成训练集;4)构建特征模板,同时建立指示词库来完善特征模板的筛选形式,使用特征模板为训练集生成其上下文特征并筛选,将筛选后得到的特征输入机器学习模型进行参数迭代训练;5)对待识别的威胁情报文本进行粗分词、词典匹配和规则匹配,利用训练完成的机器学习模型进行实体识别。本发明采用了规则、词典、模型相结合的手段完成威胁情报实体抽取,显著提高了威胁情报的实体识别精度。
搜索关键词: 情报 实体识别 威胁 特征模板 分词 机器学习模型 规则匹配 训练集 筛选 构建 匹配 文本 上下文特征 参数迭代 匹配结果 实体标签 特征输入 训练语料 词典库 规则库 词库 标注 抽取
【主权项】:
1.一种面向威胁情报的实体识别方法,其特征在于,包括以下步骤:1)对作为训练语料的威胁情报文本进行粗分词;2)构建威胁情报实体常用词词典库与规则库,对粗分词的结果进行词典匹配与规则匹配;3)基于词典匹配与规则匹配的结果,为每个词标注实体标签,形成训练集;4)构建特征模板,同时建立指示词库来完善特征模板的筛选形式,使用特征模板为训练集生成其上下文特征并筛选,将筛选后得到的特征输入机器学习模型进行参数迭代训练;5)对待识别的威胁情报文本进行粗分词、词典匹配和规则匹配,并利用训练完成的机器学习模型进行实体识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院信息工程研究所,未经中国科学院信息工程研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811589770.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top