[发明专利]一种面向威胁情报的实体识别方法及系统在审
申请号: | 201811589770.9 | 申请日: | 2018-12-25 |
公开(公告)号: | CN109858018A | 公开(公告)日: | 2019-06-07 |
发明(设计)人: | 王璐;姜波;杜翔宇;姜政伟;卢志刚 | 申请(专利权)人: | 中国科学院信息工程研究所 |
主分类号: | G06F17/27 | 分类号: | G06F17/27 |
代理公司: | 北京君尚知识产权代理事务所(普通合伙) 11200 | 代理人: | 邱晓锋 |
地址: | 100093 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种面向威胁情报的实体识别方法及系统。该方法包括:1)对作为训练语料的威胁情报文本进行粗分词;2)构建威胁情报实体常用词词典库与规则库,对粗分词的结果进行词典匹配与规则匹配;3)基于匹配结果,为每个词标注实体标签,形成训练集;4)构建特征模板,同时建立指示词库来完善特征模板的筛选形式,使用特征模板为训练集生成其上下文特征并筛选,将筛选后得到的特征输入机器学习模型进行参数迭代训练;5)对待识别的威胁情报文本进行粗分词、词典匹配和规则匹配,利用训练完成的机器学习模型进行实体识别。本发明采用了规则、词典、模型相结合的手段完成威胁情报实体抽取,显著提高了威胁情报的实体识别精度。 | ||
搜索关键词: | 情报 实体识别 威胁 特征模板 分词 机器学习模型 规则匹配 训练集 筛选 构建 匹配 文本 上下文特征 参数迭代 匹配结果 实体标签 特征输入 训练语料 词典库 规则库 词库 标注 抽取 | ||
【主权项】:
1.一种面向威胁情报的实体识别方法,其特征在于,包括以下步骤:1)对作为训练语料的威胁情报文本进行粗分词;2)构建威胁情报实体常用词词典库与规则库,对粗分词的结果进行词典匹配与规则匹配;3)基于词典匹配与规则匹配的结果,为每个词标注实体标签,形成训练集;4)构建特征模板,同时建立指示词库来完善特征模板的筛选形式,使用特征模板为训练集生成其上下文特征并筛选,将筛选后得到的特征输入机器学习模型进行参数迭代训练;5)对待识别的威胁情报文本进行粗分词、词典匹配和规则匹配,并利用训练完成的机器学习模型进行实体识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院信息工程研究所,未经中国科学院信息工程研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811589770.9/,转载请声明来源钻瓜专利网。