[发明专利]用户类型的预测方法、装置、电子设备及可读存储介质在审
申请号: | 201811549960.8 | 申请日: | 2018-12-18 |
公开(公告)号: | CN109815980A | 公开(公告)日: | 2019-05-28 |
发明(设计)人: | 李星 | 申请(专利权)人: | 北京三快在线科技有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06F16/9535;G06Q30/02 |
代理公司: | 北京润泽恒知识产权代理有限公司 11319 | 代理人: | 莎日娜 |
地址: | 100083 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本公开的实施例提供了一种用户类型的预测方法、装置、电子设备及可读存储介质,所述方法包括:依据目标用户在当前时间的行为数据和场景信息,生成所述目标用户的当前特征;依据目标用户在目标历史时间段的行为数据和历史用户类型,生成所述目标用户的历史特征序列;将所述当前特征以及所述历史特征序列输入至预先训练的用户类型预测模型,得到所述目标用户的类型,所述用户类型预测模型使用用户类型样本对基于时序的机器学习模型训练得到,所述用户类型样本包括参考特征、历史特征序列、参考用户类型。可以通过历史特征序列和当前特征共同预测用户类型,有助于提高预测的准确度。 | ||
搜索关键词: | 用户类型 目标用户 历史特征 可读存储介质 预测 电子设备 行为数据 预测模型 样本 机器学习模型 历史时间段 准确度 时序 参考特征 场景信息 历史用户 序列输入 参考 | ||
【主权项】:
1.一种用户类型的预测方法,其特征在于,所述方法包括:依据目标用户在当前时间的行为数据和场景信息,生成所述目标用户的当前特征;依据目标用户在目标历史时间段的行为数据和历史用户类型,生成所述目标用户的历史特征序列;将所述当前特征以及所述历史特征序列输入至用户类型预测模型,得到所述目标用户的类型,所述用户类型预测模型使用用户类型样本对基于时序的机器学习模型训练得到,所述用户类型样本包括参考特征、历史特征序列、参考用户类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京三快在线科技有限公司,未经北京三快在线科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811549960.8/,转载请声明来源钻瓜专利网。