[发明专利]一种基于卷积神经网络的图像融合方法有效
申请号: | 201810991787.0 | 申请日: | 2018-08-29 |
公开(公告)号: | CN109272024B | 公开(公告)日: | 2021-08-20 |
发明(设计)人: | 王蒙;刘兴旺;梁敏 | 申请(专利权)人: | 昆明理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 650093 云*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于卷积神经网络的图像融合方法,属于信息融合、图像处理领域。本发明通过训练并使用卷积神经网络来获得融合图片。通过针对待融合图片选定训练集预先对卷积神经网络进行训练,整个训练过程属于监督训练;在训练过程中涉及到图片的分析与合成;再使用训练好的两组模型权值前馈网络的分析和反馈网络的合成,用于深度神经网络融合模型。训练和融合过程中的融合法则均采用基于深度学习的sigmoid函数融合法则。本发明避免了融合过程中出现冗余信息以及相关信息的遗漏。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 图像 融合 方法 | ||
【主权项】:
1.一种基于卷积神经网络的图像融合方法,其特征在于:首先针对待融合图片特性选定训练数据集并对其进行预处理,针对待融合图片选取若干图片作为训练数据集,并对选取的图片进行模糊处理,形成由原清晰图片和模糊图片组成的训练数据集;然后通过监督训练利用卷积神经网络模型对训练数据集获得模型权值,将原清晰图片和模糊图片输入卷积神经网络模型得到对应的特征映射,将模糊图片的特征映射通过融合法则得到了融合后的特征映射,计算原清晰图片的特征映射和模糊图片融合后的特征映射的差值,并使差值达到最小误差,获得对待融合图片分析的前馈网络权值weight_f与合成图片的反馈网络权值weight_b;最后将训练获得的权值应用到模型上对图像进行融合,将一张白噪声图片和待融合图片输入卷积神经网络模型得到对应的特征映射,利用融合法则对待融合图片的特征映射进行融合进而获得融合后的特征映射,计算待融合图片融合后的特征映射与白噪声图片的特征映射的差值,并使差值最小化,对此时的白噪声图片进行逆运算得到最终的融合图片。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810991787.0/,转载请声明来源钻瓜专利网。
- 上一篇:一种物联网迁移学习方法和系统
- 下一篇:一种相似常用汉字查找方法
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序