[发明专利]用于防沉迷系统的基于随机森林的自训练学习系统及方法有效
申请号: | 201810974270.0 | 申请日: | 2018-08-24 |
公开(公告)号: | CN109284776B | 公开(公告)日: | 2022-05-03 |
发明(设计)人: | 骆源;徐彬;方品;应臣浩 | 申请(专利权)人: | 小沃科技有限公司;上海交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N20/00 |
代理公司: | 上海光华专利事务所(普通合伙) 31219 | 代理人: | 庞红芳 |
地址: | 201712 上海市杨*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种用于防沉迷系统的基于随机森林的自训练学习系统及方法,所述方法包括:对至少一个已标记的游戏特征序列进行PCA训练获得游戏特征序列训练集;基于随机森林的分类器对未标记的游戏特征序列进行识别,将置信度最高的未标记的游戏特征序列添加到所述游戏特征序列训练集;重新对所述游戏特征序列训练集的数据进行PCA训练,直至达到预设循环次数或所述游戏特征序列训练集不再增大;利用所述游戏特征序列训练集对输入的测试游戏特征序列进行识别。本发明提供的基于随机森林的自学习方法,用于解决防沉迷系统中大量游戏序列数据无标记的问题,通过利用大量的未标记游戏序列数据和少量的标记游戏序列数据共同构建更好的分类器。 | ||
搜索关键词: | 用于 沉迷 系统 基于 随机 森林 训练 学习 方法 | ||
【主权项】:
1.一种用于防沉迷系统的基于随机森林的自训练学习方法,其特征在于,所述用于防沉迷系统的基于随机森林的自训练学习方法包括:对至少一个已标记的游戏特征序列进行PCA训练获得游戏特征序列训练集;基于随机森林的分类器对未标记的游戏特征序列进行识别,将置信度最高的未标记的游戏特征序列添加到所述游戏特征序列训练集;重新对所述游戏特征序列训练集的数据进行PCA训练,直至达到预设循环次数或所述游戏特征序列训练集不再增大;利用所述游戏特征序列训练集对输入的测试游戏特征序列进行识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于小沃科技有限公司;上海交通大学,未经小沃科技有限公司;上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810974270.0/,转载请声明来源钻瓜专利网。