[发明专利]一种基于高阶深度哈希学习的图像检索方法有效

专利信息
申请号: 201810919209.6 申请日: 2018-08-14
公开(公告)号: CN109241313B 公开(公告)日: 2021-11-02
发明(设计)人: 张建新;吴悦;张强 申请(专利权)人: 大连大学
主分类号: G06F16/53 分类号: G06F16/53;G06F16/51;G06K9/62;G06N3/04;G06N3/08
代理公司: 大连八方知识产权代理有限公司 21226 代理人: 卫茂才
地址: 116622 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于高阶深度哈希学习的图像检索方法。该发明方法包括:构造数据集,获取原始图像的特征和标签信息,并将其划分为训练集、测试集和检索图像集;利用基础特征子网络、高阶池化子网络、哈希子网络及损失子网络四个模块构建高阶深度哈希网络结构;基于损失函数,借助随机梯度下降法和反向传播算法训练模型,优化深度哈希网络;利用学习到的网络计算测试集与检索图像集的哈希码,根据汉明距离输出检索结果。本发明的网络模型融合基础特征、高阶特征和哈希编码,深入挖掘三者的内在联系,联合优化,保证学习到的哈希码具有更丰富的语义信息,借助交叉熵损失实现端对端训练,提升高阶哈希的图像检索性能。
搜索关键词: 一种 基于 深度 学习 图像 检索 方法
【主权项】:
1.一种基于高阶深度哈希学习的图像检索方法,其特征在于,该方法包括以下步骤:步骤S1:构造包含图像数据及标签的图像数据集,并划分为训练集、测试集和检索图像集三部分,训练集用于模型训练,测试集和检索图像集用于模型测试;步骤S2:构建高阶深度哈希网络的结构,包括基础特征子网络、高阶池化子网络、哈希子网络及损失子网络;步骤S3:高阶深度哈希网络模型的端对端训练,包括模型特征前向传播和误差反向传播两个过程;步骤S4:根据学习到的高阶深度哈希网络,计算测试集和检索图像集的深度高阶哈希码;步骤S5:计算测试集与检索图像集哈希码之间的汉明距离,将最小汉明距离对应的图像作为检索结果输出,用平均精度均值指标评判该方法整体性能。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连大学,未经大连大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810919209.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top