[发明专利]一种非结构化局部放电数据的模式识别方法及系统有效
申请号: | 201810852574.X | 申请日: | 2018-07-30 |
公开(公告)号: | CN109145961B | 公开(公告)日: | 2021-10-22 |
发明(设计)人: | 宋辉;万晓琪;罗林根;盛戈皞;钱勇;刘亚东;李喆 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G01R31/12 |
代理公司: | 上海东信专利商标事务所(普通合伙) 31228 | 代理人: | 杨丹莉;李丹 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种非结构化局部放电数据的模式识别方法,其包括步骤:(1)获取表征若干种局部放电绝缘缺陷类型的原始局部放电图像样本;(2)对原始局部放电图像样本中的原始图像进行预处理,得到各原始图像的二维矩阵,将二维矩阵列向求和得到各原始图像的一维数组,对一维数组进行归一化处理;(3)将归一化处理后的一维数组输入一维卷积神经网络模型中,以对一维卷积神经网络模型进行训练,通过训练以更新一维卷积神经网络模型的参数;(4)将待识别的局部放电图像输入经过训练的一维卷积神经网络模型中,获取的一维卷积神经网络模型的输出即为绝缘缺陷识别结果。此外,本发明还公开了一种非结构化局部放电数据的模式识别系统。 | ||
搜索关键词: | 一种 结构 局部 放电 数据 模式识别 方法 系统 | ||
【主权项】:
1.一种非结构化局部放电数据的模式识别方法,其特征在于,包括步骤:(1)获取表征若干种局部放电绝缘缺陷类型的原始局部放电图像样本;(2)对原始局部放电图像样本中的原始图像进行预处理,得到各原始图像的二维矩阵,将二维矩阵列向求和得到各原始图像的一维数组,对一维数组进行归一化处理;(3)将归一化处理后的一维数组输入一维卷积神经网络模型中,以对一维卷积神经网络模型进行训练,通过训练以更新一维卷积神经网络模型的参数;(4)将待识别的局部放电图像输入经过训练的一维卷积神经网络模型中,获取的一维卷积神经网络模型的输出即为绝缘缺陷识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810852574.X/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置