[发明专利]基于多变量相关性及时滞性的流程工业系统预测模型在审
申请号: | 201810774602.0 | 申请日: | 2018-07-13 |
公开(公告)号: | CN108803528A | 公开(公告)日: | 2018-11-13 |
发明(设计)人: | 郑松;罗单;葛铭;郑小青;魏江 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G05B19/418 | 分类号: | G05B19/418 |
代理公司: | 杭州杭诚专利事务所有限公司 33109 | 代理人: | 尉伟敏 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于多变量相关性及时滞性的流程工业系统预测模型,确定待预测指标和相关指标,所述相关指标是指对待预测指标产生影响的指标变量;获取待预测指标变量某一时段的时间序列,作为比较序列;获取所述相关指标变量在同一时段的时间序列,作为参考序列;计算所述参考序列和比较序列的相关联度;设置关联度阈值,根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S;将所述特征变量集合S作为人工神经网络的输入变量,将待预测指标变量作为判断的基准变量,以最小化预测误差为目标,去除特征变量集合S中的无关和冗余特征变量,并在此过程中调整人工神经网络的参数,最终得到最优输入特征子集A,同时也建立了有效的待预测指标预测模型。 | ||
搜索关键词: | 预测指标 特征变量 预测模型 关联度 流程工业系统 人工神经网络 集合 参考序列 时间序列 指标变量 多变量 基准变量 冗余特征 输入变量 输入特征 同一时段 预测误差 最小化 子集 去除 筛选 | ||
【主权项】:
1.基于多变量相关性及时滞性的流程工业系统预测模型,其特征在于,确定待预测指标和相关指标,所述相关指标是指对待预测指标产生影响的指标变量;获取待预测指标变量某一时段的时间序列,作为比较序列;获取所述相关指标变量在同一时段的时间序列,作为参考序列;计算所述参考序列和比较序列的相关联度;设置关联度阈值,根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S;将所述特征变量集合S作为人工神经网络的输入变量,将待预测指标变量作为判断的基准变量,以最小化预测误差为目标,去除特征变量集合S中的无关和冗余特征变量,并在此过程中调整人工神经网络的参数,最终得到最优输入特征子集A,同时也建立了有效的待预测指标预测模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810774602.0/,转载请声明来源钻瓜专利网。