[发明专利]一种基于元学习的众包软件开发者推荐方法有效

专利信息
申请号: 201810642091.7 申请日: 2018-06-21
公开(公告)号: CN109032591B 公开(公告)日: 2021-04-09
发明(设计)人: 孙海龙;王旭;张振羽;刘旭东 申请(专利权)人: 北京航空航天大学
主分类号: G06F8/35 分类号: G06F8/35;G06N3/04
代理公司: 北京中创阳光知识产权代理有限责任公司 11003 代理人: 尹振启
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于元学习的众包软件开发者推荐方法,所述方法中的模型总体包含三个主要组件,注册行为预测器,提交行为预测器,获胜行为预测器,所述提交行为预测器基于用户已经注册后的情况进行预测,获胜行为预测器基于用户已经提交后的情况进行预测,注册者预测器预测没有任何先决条件,在所述注册行为预测器对任务数据集进行学习中,如果输出的注册概率不在前top R,则用户获胜概率为0,终止该实例预测,否则继续使用提交行为预测器进行输出检测;在提交行为预测器中,如果输出的提交概率不在前top S,则用户的获胜概率为0,终止该实例预测,否则进入获胜行为预测器;最后由用户获胜行为预测器得到获胜概率,并根据获胜概率推荐前K个用户的列表。
搜索关键词: 一种 基于 学习 软件 开发者 推荐 方法
【主权项】:
1.一种基于神经网络的众包软件开发者推荐方法,所述方法中包含三个主要组件:注册行为预测器、提交行为预测器、获胜行为预测器,所述提交行为预测器基于用户已经注册后的情况进行预测,获胜行为预测器基于用户已经提交后的情况进行预测,在所述注册行为预测器对任务数据集进行学习中,如果输出的注册概率不在前top R,则用户获胜概率为0,终止该实例预测,否则提交行为预测器;在提交行为预测器中,如果输出的提交概率不在前top S,则用户的获胜概率为0,终止该实例预测,否则提交获胜行为预测器;最后由用户获胜行为预测器得到获胜概率,并根据获胜概率推荐前K个用户的列表,所述R,S,K为正整数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810642091.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top