[发明专利]人脸特征点定位方法、装置、设备及存储介质有效
申请号: | 201810576579.4 | 申请日: | 2018-06-06 |
公开(公告)号: | CN109002758B | 公开(公告)日: | 2021-05-04 |
发明(设计)人: | 周俊伟;潘艺云;熊盛武;向剑文;杨焱超 | 申请(专利权)人: | 武汉理工大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
代理公司: | 深圳青年人专利商标代理有限公司 44350 | 代理人: | 吴桂华 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明适用计算机技术领域,提供了一种人脸特征点定位方法、装置、设备及存储介质,该方法包括:从训练库中获取与用户输入的人脸图像相关的多个初始形状,通过级联回归算法对每个初始形状进行级联回归,获得每个初始形状对应的预测结果,根据特征点字典,计算每个预测结果中每个特征点对应的稀疏重构系数和重构残差,根据稀疏重构系数和重构残差,对每个预测结果中每个特征点的预测位置和预测遮挡状态进行修正,通过级联回归算法对修正后的每个预测结果进行级联回归,获得人脸图像每个特征点的位置和遮挡状态,从而有效地提高了对局部遮挡人脸图像上的特征点进行定位的准确度和效果。 | ||
搜索关键词: | 特征 定位 方法 装置 设备 存储 介质 | ||
【主权项】:
1.一种人脸特征点定位方法,其特征在于,所述方法包括下述步骤:当接收到人脸特征点定位请求时,获取用户输入的人脸图像,从预设的训练库中选取与所述人脸图像相关的多个初始形状;通过预设的级联姿态回归算法对所述初始形状进行级联回归,得到所述每个初始形状对应的预测结果;根据预先构建的特征点字典,计算所述每个预测结果中每个预设特征点对应的稀疏重构系数和重构残差;根据所述稀疏重构系数和所述重构残差,对所述每个预测结果中所述每个特征点的预测位置和预测遮挡状态进行修正;通过所述级联姿态回归算法对修正后的所述预测结果进行级联回归,得到所述人脸图像上所述每个特征点的位置和遮挡状态。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉理工大学,未经武汉理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810576579.4/,转载请声明来源钻瓜专利网。