[发明专利]通过WordNet嵌入进行测试和更新的树形网络方法有效
申请号: | 201810517482.6 | 申请日: | 2018-05-25 |
公开(公告)号: | CN108681775B | 公开(公告)日: | 2021-04-13 |
发明(设计)人: | 张仲楠;曾鸣;朱展图 | 申请(专利权)人: | 厦门大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04 |
代理公司: | 厦门南强之路专利事务所(普通合伙) 35200 | 代理人: | 马应森 |
地址: | 361005 *** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 通过WordNet嵌入进行测试和更新的树形网络方法,涉及图片智能分类。构建树形网络;预训练;基于SVM的动态剪枝,在测试过程中,可以动态剪枝特征映射的激活值过低的节点和节点的子树,因为若节点的激活值太低,则该节点表示的类的概率较低,因此后代节点的概率会较低并且可以忽略;每张特征图的激活值之和的具有较强的线性可分性,因此使用SVM在测试过程中进行模型的加速;基于分支的在线更新,使用检测到的图像作为训练样本,将预测概率高的样本回传给树形网络进行训练。 | ||
搜索关键词: | 通过 wordnet 嵌入 进行 测试 更新 树形 网络 方法 | ||
【主权项】:
1.通过WordNet嵌入进行测试和更新的树形网络方法,其特征在于包括以下步骤:1)构建树形网络;2)预训练;3)基于SVM的动态剪枝,在测试过程中,可以动态剪枝特征映射的激活值过低的节点和节点的子树,因为若节点的激活值太低,则该节点表示的类的概率较低,因此后代节点的概率会较低并且可以忽略;每张特征图的激活值之和的具有较强的线性可分性,因此使用SVM在测试过程中进行模型的加速;4)基于分支的在线更新,使用检测到的图像作为训练样本,将预测概率高的样本回传给树形网络进行训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810517482.6/,转载请声明来源钻瓜专利网。