[发明专利]迁移学习方法、装置、计算机设备和存储介质有效
申请号: | 201810345254.5 | 申请日: | 2018-04-17 |
公开(公告)号: | CN108805160B | 公开(公告)日: | 2020-03-24 |
发明(设计)人: | 韩茂琨;王健宗;肖京 | 申请(专利权)人: | 平安科技(深圳)有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 深圳市明日今典知识产权代理事务所(普通合伙) 44343 | 代理人: | 王杰辉 |
地址: | 518000 广东省深*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请揭示了迁移学习方法,迁移学习网络包括任务训练网络和域分类网络,任务训练网络还包括任务训练模型,域分类网络还包括域分类器,所述方法包括:将指定任务的标注数据输入任务训练模型进行训练,以获取到确定特征提取层的第一参数;锁定所述第一参数,将未标注数据和所述标注数据混合输入域分类网络,以获取到域分类器区分未标注数据和所述标注数据的第二参数;锁定所述第二参数,所述域分类器联合所述任务训练模型共同训练所述特征提取层,以获取所述特征提取层不区分所述未标注数据和所述标注数据的第三参数;基于所述第三参数,将所述特征提取层根据所述标注数据训练得到的训练结果迁移至所述未标注数据,对所述未标注数据进行识别。 | ||
搜索关键词: | 迁移 学习方法 装置 计算机 设备 存储 介质 | ||
【主权项】:
1.一种应用于迁移学习网络的迁移学习方法,其特征在于,迁移学习网络包括共用同一特征提取层的任务训练网络和域分类网络,任务训练网络还包括任务训练模型,域分类网络还包括域分类器,所述方法包括:将指定任务的标注数据输入所述任务训练模型进行模型训练,以获取到特征提取层的第一参数;锁定所述第一参数,将未标注数据和所述标注数据混合输入所述域分类网络,以获取到所述域分类器区分所述未标注数据和所述标注数据的第二参数;锁定所述第二参数,所述域分类器联合所述任务训练模型共同训练所述特征提取层,以获取所述特征提取层不区分所述未标注数据和所述标注数据的第三参数;基于所述第三参数,将所述特征提取层根据所述标注数据训练得到的训练结果迁移至所述未标注数据,对所述未标注数据进行识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810345254.5/,转载请声明来源钻瓜专利网。