[发明专利]神经网络模型分块压缩方法、训练方法、计算装置及系统有效
申请号: | 201780042629.4 | 申请日: | 2017-12-29 |
公开(公告)号: | CN109791628B | 公开(公告)日: | 2022-12-27 |
发明(设计)人: | 张悠慧;季宇;张优扬 | 申请(专利权)人: | 清华大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/063 |
代理公司: | 北京睿邦知识产权代理事务所(普通合伙) 11481 | 代理人: | 徐丁峰 |
地址: | 100084*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种用于神经网络的网络模型分块压缩方法,包括:权重矩阵获得步骤,获得经过训练得到的神经网络的网络模型的权重矩阵;权重矩阵分块步骤,按照预定阵列大小将权重矩阵划分成由若干初始子块组成的阵列;待裁剪权值元素集中步骤,根据子块中的矩阵元素的权值绝对值和值,通过行列交换,将权值较小的矩阵元素集中到待裁剪子块中,使得该待裁剪子块中的矩阵元素的权值绝对值和值相对于不是待裁剪子块的其他子块中的矩阵元素的权值绝对值和值更小;子块裁剪步骤,将上述待裁剪子块中的矩阵元素的权值裁剪掉,获得最终的权重矩阵,以实现对神经网络的网络模型的压缩。实现能够节省资源开销,在有限资源的条件下布置规模巨大的神经网络。 | ||
搜索关键词: | 神经网络 模型 分块 压缩 方法 训练 计算 装置 系统 | ||
【主权项】:
1.一种用于神经网络的网络模型分块压缩方法,包括:权重矩阵获得步骤,获得经过训练得到的神经网络的网络模型的权重矩阵;权重矩阵分块步骤,按照预定阵列大小将权重矩阵划分成由若干初始子块组成的阵列;待裁剪权值元素集中步骤,根据子块中的矩阵元素的权值绝对值和值,通过行列交换,将权值较小的矩阵元素集中到待裁剪子块中,使得该待裁剪子块中的矩阵元素的权值绝对值和值相对于不是待裁剪子块的其他子块中的矩阵元素的权值绝对值和值更小;和子块裁剪步骤,将上述待裁剪子块中的矩阵元素的权值裁剪掉,获得最终的权重矩阵,以实现对神经网络的网络模型的压缩。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201780042629.4/,转载请声明来源钻瓜专利网。