[发明专利]基于多尺度卷积神经网络的无线电信号调制识别方法有效

专利信息
申请号: 201711144077.6 申请日: 2017-11-17
公开(公告)号: CN107979554B 公开(公告)日: 2019-10-08
发明(设计)人: 杨淑媛;焦李成;黄震宇;吴亚聪;王喆;李兆达;张博闻;宋雨萱;李治;王翰林 申请(专利权)人: 西安电子科技大学
主分类号: H04L27/00 分类号: H04L27/00;H04L27/18
代理公司: 陕西电子工业专利中心 61205 代理人: 田文英;王品华
地址: 710071 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于多尺度卷积神经网络的无线电信号调制识别算法,其实现步骤为:(1)生成处理后的无线电调制信号;(2)生成二维时频图,对信号的瞬时相关函数作傅里叶变换得到信号的维格纳‑威利时频分布图;(3)对时频分布图进行预处理,生成训练样本集和测试样本集;(4)构建多尺度卷积神经网络模型并进行训练;(5)使用训练好的网络模型对测试集进行测试,计算正确率,获得识别准确率,评估网络性能。本发明具有普适性强,不需要人工特征提取和大量先验知识,复杂度低,分类结果准确、稳定的优点,可用于信号分类识别技术领域中。
搜索关键词: 基于 尺度 卷积 神经网络 无线 电信号 调制 识别 方法
【主权项】:
1.一种基于多尺度卷积神经网络的无线电信号调制识别方法,其特征在于:包括如下步骤:(1)生成处理后的无线电调制信号:将十一种共计220000个无线电调制信号中的每一个信号通过瑞利衰落信道,再叠加信噪比为+5分贝的高斯白噪声,得到220000个无线电调制信号;(2)生成二维时频图:(2a)利用维格纳‑威利时频分布公式,分别求220000个无线电调制信号中的每一个无线电调制信号的维格纳‑威利时频分布;(2b)画出维格纳‑威利时频分布的等高线图,得到十一种共计220000张二维时频图;(3)生成训练样本集和测试样本集:(3a)根据归一化公式,分别对十一种二维时频图中的每一张二维时频图进行归一化处理,将所有归一化处理后的二维时频图组合成图像样本集合;(3b)分别从图像样本集合的每一种二维时频图中随机抽取80%的样本,组合成训练样本集,余下的20%组合为测试样本集;(4)构建多尺度卷积神经网络模型:(4a)设定多尺度卷积神经网络的参数和最大迭代次数,最大迭代次数设为100000步;(4b)构建用于对信号进行自动特征提取的12层卷积神经网络模型;(4c)在12层的卷积神经网络模型中,加入提取信号多尺度特征的两个多尺度卷积层,得到14层多尺度卷积神经网络模型;(4d)设置多尺度卷积神经网络模型的损失函数、优化算法和激活函数;(5)训练多尺度卷积神经网络模型:(5a)将打乱训练样本集中所有样本排列顺序的训练样本集,输入到多尺度卷积神经网络模型中;(5b)训练多尺度卷积神经网络模型,当达到多尺度卷积神经网络设置的迭代次数时,完成卷积神经网络的训练过程,得到训练好的多尺度卷积神经网络模型;(6)获得识别准确率:(6a)将测试样本集输入到训练好的多尺度卷积神经网络模型中,得到识别结果;(6b)将识别结果与测试集的真实类别对比,统计识别正确率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711144077.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top