[发明专利]一种基于深度学习的WiFi室内定位系统有效
| 申请号: | 201710833040.8 | 申请日: | 2017-09-15 |
| 公开(公告)号: | CN107529222B | 公开(公告)日: | 2020-11-06 |
| 发明(设计)人: | 钱久超;洪燕;刘佩林 | 申请(专利权)人: | 上海交通大学 |
| 主分类号: | H04W64/00 | 分类号: | H04W64/00;H04W84/12;G01C21/20;G01S5/02;G01S5/10 |
| 代理公司: | 上海汉声知识产权代理有限公司 31236 | 代理人: | 胡晶 |
| 地址: | 200240 *** | 国省代码: | 上海;31 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明属于室内定位技术领域,更具体地,涉及一种基于深度学习的WiFi室内定位系统。它包括依次连接的离线数据获取模块(100)、粗指纹库建立模块(200)、特征指纹库提取模块(300)、在线数据融合模块(400)和目标位置输出模块(500)。该系统解决室内接收信号强度信号在时空阈中,由于多径效应、信号衰落及其他噪声干扰引起的信号波动性问题,通过深度置信网络探究信号内部的环境属性,提取特征指纹进行最终的目标定位,并且有效地达到当前定位技术不能达到的定位精度。 | ||
| 搜索关键词: | 一种 基于 深度 学习 wifi 室内 定位 系统 | ||
【主权项】:
一种基于深度学习的WiFi室内定位系统,其特征在于:它包括依次连接的离线数据获取模块(100)、粗指纹库建立模块(200)、特征指纹库提取模块(300)、在线数据融合模块(400)和目标位置输出模块(500),其中,所述离线数据获取模块(100)用于获取接入点的物理地址信息,采集位于参考点处离线接收信号强度数据,并将这些数据传输给粗指纹库建立模块(200);所述粗指纹库建立模块(200)遍历所有参考点处的离线接收信号强度数据,使得离线接收信号强度与参考点的位置坐标一一对应生成粗指纹库;所述特征指纹库提取模块(300)归一化参考点处离线接受信号强度数据,将其输入至四层深度置信网络进行训练,四层深度置信网络输出权重和偏置矩阵存储为特征指纹;所述在线数据融合模块(400)实时采集接收信号强度数据并对其进行归一化处理,再利用每个参考点处的特征指纹对实时采集的接收信号强度数据进行重构,将重构的接受信号强度数据与实时采集的原数据输入至径向基函数,计算出两者之间的差异度,遍历所有的参考点,计算出当前接收信号强度数据出现在每个参考点处的概率,最后通过参考点位置的权重计算出实时接收信号强度数据对应的地理位置;所述的目标位置输出模块(500)将基于数据融合算法估算出的目标位置进行输出,完成对目标位置的定位。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710833040.8/,转载请声明来源钻瓜专利网。





