[发明专利]基于协作表示的近邻保持人脸识别方法有效
申请号: | 201710671065.2 | 申请日: | 2017-08-07 |
公开(公告)号: | CN107480623B | 公开(公告)日: | 2020-01-07 |
发明(设计)人: | 王磊;李苗;姬红兵;李丹萍;陈爽月;臧伟浩;刘璐;赵杰 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 61205 陕西电子工业专利中心 | 代理人: | 田文英;王品华 |
地址: | 710071 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于协作表示的近邻保持人脸识别方法,实现步骤:1、划分数据库样本集;2、组成样本矩阵;3、计算初始投影矩阵;4、计算初始降维后的训练样本矩阵;5、计算初始降维后训练样本的权值矩阵;6、构建近邻保持图;7、计算近邻保持图的拉普拉斯矩阵;8、计算初始降维后训练样本的迹差矩阵;9、计算二次投影矩阵;10、计算二次降维后的训练样本矩阵;11、对测试样本进行降维及分类。本发明在样本有标签的情况下,利用样本的协作表示关系构造类内近邻保持图和类间近邻保持图,保持了样本的局部信息和全局信息,再利用近邻保持投影,有效地实现了对人脸特征的降维,同时,本发明对人脸图像识别具有很好的实时性。 | ||
搜索关键词: | 基于 协作 表示 近邻 保持 识别 方法 | ||
【主权项】:
1.一种基于协作表示的近邻保持人脸识别方法,包括如下步骤:/n(1)划分数据库样本集:/n从人脸图像集中依次提取所有已知标签样本组成含有C类样本的训练集,将人脸图像集中所有的未知标签样本组成测试集;/n(2)获取样本矩阵:/n(2a)按列取出训练集中的单幅人脸图像像素点的灰度特征值,排列成一个列向量,遍历训练集图像,将得到的所有列向量组成训练样本矩阵;/n(2b)按列取出测试集中的单幅人脸图像像素点的灰度特征值,排列成一个列向量,遍历测试集图像,将得到的所有列向量组成测试样本矩阵;/n(3)计算初始投影矩阵:/n采用主成分分析方法PCA,对训练样本集的协方差矩阵进行奇异值分解,保留奇异值分解得到的99%特征值,将保留特征值所对应的特征向量组成初始投影矩阵;/n(4)按照下式,计算初始降维后的训练样本矩阵:/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710671065.2/,转载请声明来源钻瓜专利网。