[发明专利]一种自主学习的图像精细分类方法有效

专利信息
申请号: 201710598711.7 申请日: 2017-07-21
公开(公告)号: CN107563406B 公开(公告)日: 2021-01-01
发明(设计)人: 宣琦;肖浩泉;傅晨波;方宾伟;王金宝 申请(专利权)人: 浙江工业大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06F16/953
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省杭*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种自主学习的图像精细分类方法,包括以下步骤:1)人工采集对应需求标签的图像数据集,保存至强标签数据集,使用ImageNet数据集初始化卷积神经网络CNN参数;2)使用强标签数据集微调修正CNN;3)判断分类网络的优化趋势;4)判断网络分类精度是否达到了要求;5)利用网络爬虫从互联网爬取、人工采集与标签相关的图像数据和噪声数据保存至弱标签数据集;6)使用弱标签数据集调整滤波器的阈值;7)使用调整后的滤波器筛选数据保存至强标签数据集和噪声数据集;8)保存网络权重和滤波器参数。本发明训练得到的分类器的分类精度和鲁棒性都较高。
搜索关键词: 一种 自主 学习 图像 精细 分类 方法
【主权项】:
一种自主学习的图像精细分类方法,其特征在于:包括以下步骤:S1:人工采集对应需求标签的图像数据集,保存至强标签数据集,使用ImageNet数据集初始化卷积神经网络CNN参数;S2:使用强标签数据集微调修正CNN;S3:判断分类网络的优化趋势;S4:判断网络分类精度是否达到了要求;S5:利用网络爬虫从互联网爬取、人工采集与标签相关的图像数据和噪声数据保存至弱标签数据集;S6:使用弱标签数据集调整滤波器的阈值。S7:使用调整后的滤波器筛选数据保存至强标签数据集和噪声数据集。S8:保存网络权重和滤波器参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710598711.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top