[发明专利]一种双通道卷积神经网络的单图像超分辨率计算方法有效
申请号: | 201710556581.0 | 申请日: | 2017-07-10 |
公开(公告)号: | CN107492070B | 公开(公告)日: | 2019-12-03 |
发明(设计)人: | 李春平;贾慧秒;周登文 | 申请(专利权)人: | 华北电力大学 |
主分类号: | G06T3/40 | 分类号: | G06T3/40;G06T5/00 |
代理公司: | 11246 北京众合诚成知识产权代理有限公司 | 代理人: | 张文宝<国际申请>=<国际公布>=<进入 |
地址: | 102206 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种双通道输入卷积神经网络的单图像超分辨率计算方法,包括(1)把已知高分辨率图像经过模糊退化处理,得到相同大小的低分辨率图像;(2)把步骤(1)得到的模糊处理后的低分辨率图像分解成低分辨率图像纹理部分和平滑结构部分;得到高分辨率图像的纹理部分和平滑结构部分;(3)把步骤(2)得到的低分辨率纹理部分和原低分辨率图像组合得到双通道输入,得到高分辨率纹理部分的输出;(4)组合步骤(3)得到的高分辨率纹理部分输出与原低分辨率图像得到最终的图像超分辨率重建结果,完成超分辨率重建;(5)计算步骤(4)和步骤(2)得到的高分辨率纹理部分之间的差值得到纹理部分损失;最小化纹理损失与图像损失的和来优化网络结构参数。 | ||
搜索关键词: | 一种 双通道 卷积 神经网络 图像 分辨率 计算方法 | ||
【主权项】:
1.一种基于双通道输入卷积神经网络的单图像超分辨率计算方法,其特征在于,包括以下步骤:/n(1)通过插值方法把已知高分辨率图像经过模糊退化处理,得到相同大小的低分辨率图像;/n(2)使用形态学成分分析方法把步骤(1)得到的模糊处理后的低分辨率图像分解成低分辨率图像纹理部分和平滑结构部分;对原高分辨率图像做相同的处理,得到高分辨率图像的纹理部分和平滑结构部分;/n(3)把步骤(2)得到的低分辨率纹理部分和原低分辨率图像组合得到双通道输入,然后输入到双通道网络结构中,得到高分辨率纹理部分的输出;/n(4)组合步骤(3)得到的高分辨率纹理部分输出与原低分辨率图像得到最终的图像超分辨率重建结果,完成超分辨率重建;/n所述的组合是将由步骤(3)得到的高分辨率纹理图像 和低分辨率输入图像平滑结构部分Nl组合得到高分辨率图像的输出 即 /n(5)计算步骤(3)高分辨率纹理输出和步骤(2)高分辨率图像分解得到的高分辨率纹理部分之间的差值得到纹理部分损失;计算步骤(4)得到的重构高分辨率图像的结果与原高分辨率图像的差值得到图像损失;最小化纹理损失与图像损失的和来优化网络结构参数。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学,未经华北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710556581.0/,转载请声明来源钻瓜专利网。
- 上一篇:基于多镜头传感器的图像融合方法
- 下一篇:医学图像处理方法及设备
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序