[发明专利]基于前期气象因子与数据挖掘技术的中长期径流预报方法在审
申请号: | 201710451205.5 | 申请日: | 2017-06-15 |
公开(公告)号: | CN107292098A | 公开(公告)日: | 2017-10-24 |
发明(设计)人: | 梁忠民;郦于杰;唐甜甜;王军;杨靖;刘甜 | 申请(专利权)人: | 河海大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 南京纵横知识产权代理有限公司32224 | 代理人: | 董建林 |
地址: | 211100 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于前期气象因子与数据挖掘技术的中长期径流预报方法,方法包括1,确定影响中长期径流的各类前期初选预报因子,计算所有类别初选预报因子序列与历史预报对象序列的相关系数,再根据逐步回归方法,提取出相关性高、方差贡献大的因子作为最终预报因子;2,构建多种基于数据挖掘技术的预报模型,将历史最终预报因子序列与预报对象序列作为不同预报模型的输入与输出,训练各预报模型;3,依据以上多种预报模型分别进行径流预报,利用最优组合赋权理论,综合集成多模型预报结果。本发明方法可广泛应用于预见期为旬、月、季、年以及多年尺度的水资源预测。 | ||
搜索关键词: | 基于 前期 气象 因子 数据 挖掘 技术 中长期 径流 预报 方法 | ||
【主权项】:
基于前期气象因子与数据挖掘技术的中长期径流预报方法,其特征是,包括以下步骤:步骤S1,确定影响中长期径流的各类前期初选预报因子,计算所有类别初选预报因子序列与历史预报对象序列的皮尔逊相关系数,再根据逐步回归方法,提取出相关性高、方差贡献大的因子作为最终预报因子;步骤S2,构建多种基于数据挖掘技术的预报模型,将历史最终预报因子序列与预报对象序列作为不同预报模型的输入与输出,训练各预报模型;步骤S3,依据以上多种预报模型分别进行径流预报,利用最优组合赋权理论,综合集成多模型预报结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710451205.5/,转载请声明来源钻瓜专利网。
- 上一篇:基于特征组的中医主症选择方法
- 下一篇:一种基于网格的动态碾压层厚分析方法
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用