[发明专利]基于卷积神经网络和随机森林的手写数字识别方法在审

专利信息
申请号: 201710131513.X 申请日: 2017-03-07
公开(公告)号: CN106991374A 公开(公告)日: 2017-07-28
发明(设计)人: 丁世飞;侯艳路;张楠;张健;赵星宇;曾凯 申请(专利权)人: 中国矿业大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04
代理公司: 暂无信息 代理人: 暂无信息
地址: 221116 江苏省徐*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明一种基于卷积神经网络和随机森林的手写体数字识别方法,通过将卷积神经网络提取数字图像的特征,之后将特征交给随机森林完成分类,这样使得模型在提取特征的过程中大大减少了时间,既克服了CNN训练时间过长的问题,又解决了在RF在人工选取特征的缺陷,最后达到了很好的识别效果。
搜索关键词: 基于 卷积 神经网络 随机 森林 手写 数字 识别 方法
【主权项】:
一种基于卷积神经网络和随机森林的手写体数字识别方法,其特征在于,包括以下步骤:步骤1:采集手写数字图像生成训练集和测试集;步骤2:构造并初始化卷积神经网络:该网络包括:输入层、两个卷积层、两个降采样层和一个全连接层,随机初始化卷积神经网络的权值,将样本输入到网络中,经过逐层计算得到样本的特征。步骤3:训练随机森林分类器,利用bootstrap重抽样方法从样本中抽取多个样本,然后对每个bootstrap样本进行决策树建模,然后组成多棵决策树进行预测,最终投票得出预测结果;步骤4:手写数字的识别,从卷积神经网络中得到特征数据之后,将特征数据输入到训练好的随机森林分类器中从而得到手写数字识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学,未经中国矿业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710131513.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top