[发明专利]一种基于复合正弦混沌神经网络的信号盲检测方法在审
申请号: | 201611107580.X | 申请日: | 2016-12-06 |
公开(公告)号: | CN106612158A | 公开(公告)日: | 2017-05-03 |
发明(设计)人: | 张昀;李经纬;于舒娟;刘欢;金超迪;孟庆霞;饶强 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | H04L1/00 | 分类号: | H04L1/00;H04L25/03 |
代理公司: | 南京经纬专利商标代理有限公司32200 | 代理人: | 朱小兵 |
地址: | 210023 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于复合正弦混沌神经网络的信号盲检测方法。所述方法采用复合正弦的混沌神经网络和Sigmoid组合的非单调的激励函数、时变的输出函数增益和分段指数退火函数构成了一个复合正弦混沌神经网络;每次迭代时,首先进入混沌神经网络,然后再进入激活函数;所述混沌神经网络具有可以避免陷于局部最小值。本发明方法继承了混沌神经网络这一特点,提高了盲检测性能;并且,该网络具有更加丰富灵活的暂态混沌动力学特性以及更强的全局搜索能力;在同等条件下,本发明的抗噪性能优于传统的Hopfield信号盲检测算法。 | ||
搜索关键词: | 一种 基于 复合 正弦 混沌 神经网络 信号 检测 方法 | ||
【主权项】:
一种基于复合正弦混沌神经网络的信号盲检测方法,其特征在于,所述方法包括如下步骤:步骤A,构造接收数据矩阵:接收端接收单个用户发送信号,经过过采样,获得离散时间信道的接收方程:XN=SΓT式中,XN是接收数据阵,S是发送信号阵,Γ是由信道冲激响应hj构成的块Toeplitz矩阵;(·)T表示矩阵转置;其中,发送信号阵:S=[sL+M(k),…,sL+M(k+N‑1)]T=[sN(k),…,sN(k‑M‑L)]N×(L+M+1),M为信道阶数,L为均衡器阶数,N为所需数据长度;sL+M(k)=[s(k),…,s(k‑L‑M)]T;其中,s∈{±1},时刻k为自然数;hj=[h0,…,hM]q×(M+1),j=0,1,…,M;q是过采样因子,取值为正整数;XN=[xL(k),…,xL(k+N‑1)]T是N×(L+1)q维的接收数据阵,其中xL(k)=Γ·sL+M(k);步骤B,接收数据矩阵奇异值分解:XN=[U,Uc]·D0·VH]]>式中,(·)H是Hermitian转置;U是奇异值分解中的N×(L+M+1)维的酉基阵;0是(N‑(L+M+1))×(L+1)q维的零矩阵;V是(L+1)q×(L+1)q维的酉基阵;Uc是N×(N‑(L+M+1))维的酉基阵;D是(L+M+1)×(L+1)q维的奇异值阵;步骤C,设置权矩阵W=IN‑Q,其中IN是N×N维的单位阵,其中,矩阵W为混沌神经网络的权矩阵,且W=WH,矩阵W的第i行第j列的元素为wij,其对角元wii>0;步骤D,选择复合正弦混沌神经网络的激活函数,进行复合正弦混沌神经网络迭代运算;所述复合正弦混沌神经网络动态方程为:dyi(t)dt=K′yi(t)+ϵ(Σjwijxj(t)+Ii)-λzi(t)xi(t)]]>yi(t)=σ‑1(xi(t))其中:t为网络迭代过程中运行的时间,该网络中的连续时间t和离散时间k通过欧拉公式实现转换;x(t)为N个神经元的输出构成的向量,t时刻,第i个神经元的输出为xi(t),第j个神经元的输出为xj(t);0≤i≤N,0≤j≤N;σ‑1(·)表示Sigmoid激活函数σ(·)的反函数;K′为神经元的衰减因子;ε是耦合因子;wij是第i神经元与第j个神经元间的连接权值;Ii是第i个神经元的偏置;zi(t)为第i个神经元的自反馈连接权值;λ为自反馈连接权值zi(t)的衰减因子,且0<β1<0.01、0<β2<1;对所述复合正弦混沌神经网络动态方程进行迭代运算,然后把每次迭代的结果代入复合正弦混沌神经网络的能量函数E(t)中,当该能量函数E(t)达到最小值,即S(k)=S(k+1)时,该混沌神经网络达到平衡,迭代结束;步骤D中,所述改进的复合正弦混沌神经网络的激活函数和时变增益参数分别为:xi(t)=σ(yi(t))=sin(tan(ui(t)×yi(t)))ui(t+1)=(1‑γ)ui(t)其中,σ(·)表示Sigmoid激活函数,ui(t)为第i个输入神经元的时变增益参数,γ为时变增益参数的衰减因子,且0<γ<0.01;步骤D中,所述复合正弦混沌神经网络的能量函数为:E(t)=-α2Σi=1NΣj=1Nxi(t)wijxj(t)-K′Σi=1N∫0xi(t)σi-1(τ)dτ-αΣi=1NIixi(t)+λ2Σi=1Nzi(t)xi2(t)]]>其中:α为该网络的尺度参数;为第i个神经元的Sigmoid函数σi(τ)的反函数,τ为被积函数的自变量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611107580.X/,转载请声明来源钻瓜专利网。
- 上一篇:通信系统
- 下一篇:基于业务类型指示的确认方法及装置