[发明专利]一种基于多点NWP的深度学习功率预测方法在审
申请号: | 201610786502.0 | 申请日: | 2016-08-30 |
公开(公告)号: | CN106650982A | 公开(公告)日: | 2017-05-10 |
发明(设计)人: | 刘永前;张浩;阎洁 | 申请(专利权)人: | 华北电力大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06 |
代理公司: | 北京众合诚成知识产权代理有限公司11246 | 代理人: | 张文宝 |
地址: | 102206*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多点NWP的深度学习功率预测方法,所述基于多点NWP的深度学习功率预测方法包括以下步骤(1)采集指定区域内功率预测所需数据;(2)将所述步骤(1)采集的数据进行预处理,得到训练深度学习网络所需数据集;(3)根据所述步骤(2)得到的数据集逐层训练深度学习网络的每一层,得到每层的网络参数;(4)将所述步骤(3)中得到的每层网络参数初始化一个深度神经网络,并进行微调,得到最终的深度学习功率预测模型;(5)将多点NWP数据输入所述步骤(4)中得到的深度学习功率预测模型,预测得到指定区域内任意风电机组、风电场、风电场群短期功率预测结果。 | ||
搜索关键词: | 一种 基于 多点 nwp 深度 学习 功率 预测 方法 | ||
【主权项】:
一种基于多点NWP的深度学习功率预测方法,其特征在于,所述预测方法包括以下步骤:(1)采集指定区域内功率预测所需数据;(2)将所述步骤(1)采集的数据进行预处理,得到训练深度神经网络所需数据集;(3)以所述步骤(2)预处理后的多点NWP数据为输入,以所述步骤(2)预处理后指定区域内多台风电机组功率作为输出,搭建多对多映射的深度神经网络结构,所述深度神经网络结构表示复杂流场的时空耦合关系和机组出力间相互影响关系,并结合流场各位置间的联系和机组间出力的联系。(4)根据所述步骤(2)得到的数据集逐层训练深度神经网络的每一层,得到每层的网络参数;(5)将所述步骤(4)中得到的每层网络参数初始化步骤(3)搭建好的深度神经网络,并进行微调,得到最终的深度学习功率预测模型;(6)将多点NWP数据输入所述步骤(5)中得到的深度学习功率预测模型,预测得到指定区域内任意风电机组、风电场、风电场群短期功率预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学,未经华北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610786502.0/,转载请声明来源钻瓜专利网。
- 上一篇:具有放大电路的用于房屋租赁的平台
- 下一篇:空间多点分解路径规划方法
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理