[发明专利]基于多线程互斥的神经网络模型的样本训练方法在审
申请号: | 201510927551.7 | 申请日: | 2015-12-14 |
公开(公告)号: | CN105574585A | 公开(公告)日: | 2016-05-11 |
发明(设计)人: | 游萌 | 申请(专利权)人: | 四川长虹电器股份有限公司 |
主分类号: | G06N3/08 | 分类号: | G06N3/08 |
代理公司: | 成都虹桥专利事务所(普通合伙) 51124 | 代理人: | 李凌峰 |
地址: | 621000 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及神经网络模型的样本训练方法,目的是为了解决目前的神经网络模型在样本训练过程中训练耗时长的问题。本发明提供一种基于多线程互斥的神经网络模型的样本训练方法,包括:确定一定数量的样本集合作为训练的基准数据集合,对训练权值进行适度的扭曲,设置训练的初始学习率和最终学习率;以初始学习率为基础,使用二阶反向传播学习算法对样本集合进行训练,当学习率达到最终学习率时,结束训练,训练时,同一进程中运行多个线程,多线程之间共享数据时,判断共享数据是否为需要加锁的数据,若是,则锁定和释放同步对象采用即用即释放资源的共享权值访问方法。本发明适用于神经网络模型的样本训练。 | ||
搜索关键词: | 基于 多线程 神经网络 模型 样本 训练 方法 | ||
【主权项】:
1.基于多线程互斥的神经网络模型的样本训练方法,包括:确定一定数量的样本集合作为训练的基准数据集合,对训练权值进行适度的扭曲,设置训练的初始学习率和最终学习率;以初始学习率为基础,使用二阶反向传播学习算法对样本集合进行训练,当学习率达到最终学习率时,结束训练;其特征在于,训练时,同一进程中运行多个线程,多线程之间共享数据时,判断共享数据是否为需要加锁的数据,若是,则锁定和释放同步对象采用即用即释放资源的共享权值访问方法。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川长虹电器股份有限公司,未经四川长虹电器股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510927551.7/,转载请声明来源钻瓜专利网。
- 上一篇:航空发动机维修工程管理工具
- 下一篇:一种防爆防假冒在位监测系统及方法