[发明专利]基于空域混合模型的高分辨SAR图像目标检测方法有效
| 申请号: | 201510397659.X | 申请日: | 2015-07-08 |
| 公开(公告)号: | CN105184305B | 公开(公告)日: | 2018-12-25 |
| 发明(设计)人: | 侯彪;焦李成;刘达;姚若玉;马晶晶;马文萍;张涛;刘闯 | 申请(专利权)人: | 西安电子科技大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62 |
| 代理公司: | 北京科亿知识产权代理事务所(普通合伙) 11350 | 代理人: | 汤东凤 |
| 地址: | 710071*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于空域混合模型的高分辨SAR图像车辆目标检测方法,它属于图像处理技术领域,主要解决传统目标检测方法在检测超高分辨SAR图像目标时出现目标不连续、虚警等问题。其检测过程为:建立混合模型并从图像中提取样本进行训练得到四阶函数分布、高斯分布和广义伽马分布参数,并对图像进行联合建模;对待检测图像提取混合分布参数;对图像加窗并计算分布参数,并将其分布逼近已得到的混合模型,基于混合模型进行分类得到目标、背景和目标阴影;利用阴影面积、阴影与目标的距离等先验知识补偿目标得到目标检测结果。本发明具有检测结果区域一致性好,目标连续完整等优点,检测结果可用于SAR图像目标识别等。 | ||
| 搜索关键词: | 基于 空域 混合 模型 分辨 sar 图像 目标 检测 方法 | ||
【主权项】:
1.一种混合参数模型的高分辨SAR图像车辆目标检测方法,包括如下步骤:1)对特定区域的高分辨SAR图像人工选取不同类别的训练样本;2)对上述训练样本采用对数累积量MoLC方法和最小均方误差MMSE方法进行训练,得到四阶函数分布、高斯分布和广义伽马分布的参数,并分别对背景类、目标类以及阴影类采用高斯分布、四阶函数分布和广义伽马分布联合建模,得到混合分布模型;3)对待检测的高分辨SAR图像基于步骤2)得到由四阶函数分布模型、高斯分布模型和广义伽马分布模型构成的混合模型提取待检测高分辨SAR图像的混合分布的分布参数;4)基于MMSE的分类,对待检测高分辨SAR图像中的像素点逐个加窗并计算该像素点的分布参数,采用MMSE的方法将图像中当前点和加窗形成的窗口区域分布逼近已得到的混合模型,并基于混合模型进行分类,得到的初步分类结果包括目标、背景和目标阴影;5)利用先验知识剔除由背景干扰形成的非阴影暗区域,得到由目标形成的阴影,先验知识包括阴影面积大小,阴影与目标区域的距离,阴影与目标的相对方向;6)利用目标阴影补偿目标点;7)得到检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510397659.X/,转载请声明来源钻瓜专利网。





