[发明专利]基于频域多尺度风速信号可预报性的超短期风速预测方法在审
申请号: | 201310750044.1 | 申请日: | 2013-12-31 |
公开(公告)号: | CN103699800A | 公开(公告)日: | 2014-04-02 |
发明(设计)人: | 于达仁;万杰;任国瑞;乔成成;刘金福;郭钰峰;胡清华;雷呈瑞;魏松林 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 杨立超 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于频域多尺度风速信号可预报性的超短期风速预测方法,属于分析和测量控制技术领域,涉及基于频域多尺度风速信号可预报性的超短期风速预测方法。为解决现有预测方法未考虑频域多尺度的可预报性问题和统计预报模型中输入空间的数据维数选取需要依靠经验而导致的预测精度低、模型训练时间长的问题,通过增加可预报性分析和自相关性分析技术步骤避免了高频分量预测的步数过长而导致叠加后反而对预测结果产生负面影响有效提高了超短期风速预测的精度并减少了模型训练的时间。本发明主要用于风电场对电场功率的预测,从而帮助电网制定合理的调度计划,确定旋转备用,安全经济地保证电网的运行。 | ||
搜索关键词: | 基于 频域多 尺度 风速 信号 预报 短期 预测 方法 | ||
【主权项】:
基于频域多尺度风速信号可预报性的超短期风速预测方法,其特征在于其具体步骤如下:步骤一:基于风速的频域多尺度特性,通过Mallat小波分解将原始风速时间序列进行分解,分解成3~4层不同频域尺度的子序列;步骤二:通过自相关性分析方法来度量各频域子序列的可预报性,根据每一个频域尺度上的风速序列可预报性分析结果以函数阈值确定各子序列的预测步数L;步骤三:将Mallat小波分解得到的尺度信号和细节信号中的每个点,通过与其前面时刻L个点及L‑1个差分项组成每个点的特征向量,并做归一化处理;利用主成分分析方法对尺度信号的输入空间进行降维处理,得到维数优化的输入向量;步骤四:根据步骤二得到的分析结果和步骤三得到的尺度信号的维数优化的输入向量和细节信号的特征向量,在各个频域尺度上分别建立不同预测长度的统计回归模型,同时得到各个频域尺度的预测结果;步骤五、通过Mallat小波重构算法将步骤四中各频域尺度的统计回归模型的预测结果进行合成,最终得到超短期风速预测的结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310750044.1/,转载请声明来源钻瓜专利网。
- 上一篇:一种沿空留巷三维加固充填墙体结构
- 下一篇:一种减震器连接支架
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用