[发明专利]基于传播时间聚类分析的多模型集成洪水预报方法有效

专利信息
申请号: 201310699773.9 申请日: 2013-12-18
公开(公告)号: CN103729550A 公开(公告)日: 2014-04-16
发明(设计)人: 李士进;朱跃龙;姜玲玲;王亚明;王继民;万定生;冯钧 申请(专利权)人: 河海大学
主分类号: G06F19/00 分类号: G06F19/00
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 杨楠
地址: 210098 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于传播时间聚类分析的多模型集成洪水预报方法,属于水文预报技术领域。首先采用派生的动态时间弯曲匹配方法进行洪水过程相似性分析,估计上下游各站点的流量传播时间,并通过对流量传播时间进行聚类分析将样本分解为若干簇,然后分别对子流量序列建立SVM回归模型模拟洪水形成过程,最后再将这些子模型合并成一个综合模型。将该方法的综合预测结果与常规条件下的单一模型和基于流量聚类的模型预测结果相比较,结果显示该模型综合表现更佳。
搜索关键词: 基于 传播 时间 聚类分析 模型 集成 洪水 预报 方法
【主权项】:
基于传播时间聚类分析的多模型集成洪水预报方法,首先根据历史流量/水位数据建立包含多个子模型的洪水预报综合模型,然后利用所建立的洪水预报综合模型进行洪水预报;其特征在于,具体包括以下步骤:步骤1、对于目标站点的历史流量/水位数据中的每个流量/水位数据,利用各上游站点与目标站点之间的流量传播时间构造对应于该流量/水位数据的传播时间向量,目标站点的历史流量/水位数据中的所有流量/水位数据所对应的传播时间向量构成传播时间向量集合;步骤2、对所述传播时间向量集合进行聚类,得到k个簇,并对聚类得到的每个簇分别进行以下处理:对于每一个上游站点,统计该簇中所包含的该上游站点与目标站点之间的流量传播时间的分布情况,并将出现频次最低的部分流量传播时间剔除,剩余的流量传播时间作为该簇中该上游站点的可用流量传播时间,最终得到该簇中各上游站点的可用流量传播时间;步骤3、构建k个训练样本集,k个训练样本集与步骤2得到的k个簇一一对应,k为聚类得到的类别数;其中任意一个训练样本集中的训练样本按照以下方法得到:选取一组目标站点的历史流量/水位数据分别作为该训练样本集中各训练样本的输出;对每一个训练样本的输出,根据其所属训练样本集所对应的簇中各上游站点的可用流量传播时间,从各上游站点的历史流量/水位数据中确定相应的流量/水位数据,并结合相应的雨量输入信息及目标站点的预见期前的历史流量/水位数据,构成该训练样本的输入;步骤4、利用所构建的k个训练样本集各自对预测模型进行训练,得到k个预测子模型,这k个预测子模型共同构成洪水预报综合模型;步骤5、根据测试样本按照以下方法从洪水预报综合模型中选择相应的预测子模型:对测试样本中目标站点的流量/水位数据,利用各上游站点与目标站点之间的流量传播时间构造对应于该流量/水位数据的传播时间向量,并从步骤2中聚类得到的各个簇中选出簇中心与该传播时间向量的距离最小的簇,距离最小的簇所对应的预测子模型即为所选择的预测子模型;步骤6、以所述测试样本作为输入,利用所选择的预测子模型进行目标站点的洪水预报。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310699773.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top