[发明专利]一种大数据中面向乱序数据流的反向传播方法无效

专利信息
申请号: 201310524206.X 申请日: 2013-10-30
公开(公告)号: CN103559541A 公开(公告)日: 2014-02-05
发明(设计)人: 王堃;卓林超;孙雁飞;吴蒙;郭篁 申请(专利权)人: 南京邮电大学
主分类号: G06N3/08 分类号: G06N3/08
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 叶连生
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种大数据中面向乱序数据流的反向传播方法,针对大数据中的乱序数据流难以获取关联规则的问题,提出了一种动态调整的改进型BP算法IBPDA(ImprovedBackPropagationAlgorithmBasedonDynamicalAdjustment),运用了动态自适应结构调整机制,根据环境要求自适应调整网络训练结构,自动删除无效训练节点,优化迭代训练过程;并在网络学习过程中动态调整神经网络三因子,即学习指数、动量因子、比例因子,来达到加快学习响应速度、增强网络稳定性的目的。仿真结果表明,通过动态自适应调整结构、动态调整三因子的神经网络,能够获得更多的收敛次数,并能有效的提高收敛率,进而提高整体网络性能。
搜索关键词: 一种 数据 面向 序数 反向 传播 方法
【主权项】:
一种大数据中面向乱序数据流的反向传播方法,其特征在于该方法运用神经元动态优化方法,根据环境要求自适应调整网络训练结构,自动删除无效训练节点,优化迭代训练过程;并在网络学习过程中动态调整神经网络三因子,使收敛更稳定,该方法具体步骤如下:输入样本期望输出值、样本输出值和训练样本输入值,神经元节点个数,输出满足条件的样本训练值,步骤1:设定一个学习模式,利用BP网络的无监督模式执行算法;步骤2:初始化各层参数,将权学习指数、动量因子、阈学习指数均默认设为1.5;步骤3:设定学习最大次数以及误差范围,为保证算法精确度,误差范围设为0.001;步骤4:动态修正隐层与输出层的连接权及阈值,并计算各单元误差ε,将所得误差与误差范围进行对比,满足条件则停止学习计算,否则转入步骤5;步骤5:动态调整权学习指数、动量因子、阈学习指数,并继续计算各单元误差;步骤6:将步骤5所得各单元误差与学习停止条件进行比较,当达到预设条件时,学习结束;步骤7:输出输出层的最后训练结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310524206.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top