[发明专利]一种风电场风速预测方法有效
申请号: | 201310147943.2 | 申请日: | 2013-04-25 |
公开(公告)号: | CN103324980A | 公开(公告)日: | 2013-09-25 |
发明(设计)人: | 刘兴杰;米增强;岑添云;余洋;梅华威 | 申请(专利权)人: | 华北电力大学(保定) |
主分类号: | G06N3/08 | 分类号: | G06N3/08 |
代理公司: | 石家庄冀科专利商标事务所有限公司 13108 | 代理人: | 李羡民;高锡明 |
地址: | 071003 河*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种风电场风速预测方法,所述方法首先采用模糊粗糙集方法对影响风电场风速的多种因素进行属性约简,去除冗余信息,得到神经网络预测模型的输入变量;然后采用加权欧氏距离进行改进的聚类方法提取相似性较高的数据作为神经网络预测模型的训练样本,并使用聚类后的数据训练各类预测模型;最后根据当前属性值选择匹配的预测模型来预测风速。本发明在传统神经网络预测模型的基础上,对模型输入变量与训练样本这两大影响神经网络预测性能的重要因素进行了优化,大大提高了模型的泛化能力。测试结果表明,本发明能大幅度提升神经网络的预测性能,有效地提高风电场风速预测精度。 | ||
搜索关键词: | 一种 电场 风速 预测 方法 | ||
【主权项】:
一种风电场风速预测方法,其特征是,所述方法首先采用模糊粗糙集方法对影响风电场风速的多种因素进行属性约简,去除冗余信息,得到神经网络预测模型的输入变量;然后采用加权欧氏距离进行改进的聚类方法提取相似性较高的数据作为神经网络预测模型的训练样本,并使用聚类后的数据训练各类预测模型;最后根据当前属性值选择匹配的预测模型来预测风速。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学(保定),未经华北电力大学(保定)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310147943.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种空调自动控制系统
- 下一篇:一种用于炉具的炉篦