[发明专利]基于慢特征分析的暴力视频检测方法有效
申请号: | 201210340160.1 | 申请日: | 2012-09-13 |
公开(公告)号: | CN102902981A | 公开(公告)日: | 2013-01-30 |
发明(设计)人: | 王亮;张彰;王开业 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/20 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 宋焰琴 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于慢特征分析的暴力视频检测方法,包括以下步骤:对已经标好类的视频进行密集轨迹提取,基于轨迹用慢特征分析方法学习出慢特征函数,通过慢特征函数得到视频段的特征表示,最后对提取的特征进行训练并建模;对新来视频进行特征提取,将提取的特征输入到训练得到的模型,得到视频的类别(暴力视频或非暴力视频)。该方法通过密集轨迹提取构建了有效的特征向量,并通过慢特征分析方法学习出了非常具有区分力的视频特征表示。近几年随着社交网站的发展,大量的视频被上传到互联网供用户下载,其中不乏含有暴力内容的视频,这些内容会对青少年产生不良影响,基于慢特征分析的暴力视频检测方法能有效检测出这些不良内容,对建设健康的互联网环境具有重要作用。 | ||
搜索关键词: | 基于 特征 分析 暴力 视频 检测 方法 | ||
【主权项】:
一种基于慢特征分析的暴力视频检测方法,其特征在于,该方法包括以下步骤:步骤S1,对于已经标好类的视频样本,计算其密集光流场;步骤S2,从所述视频的每个帧中以一定步长提取多个密集特征点,分别跟踪所述密集特征点在整个视频中的轨迹,从而得到由所述视频中所有密集特征点对应的密集轨迹组成的密集轨迹集合T;步骤S3,对于所述密集轨迹集合T中的每条密集轨迹,提取其中各轨迹点邻域的像素值,构建出与每条密集轨迹对应的多个向量V;步骤S4,基于每条密集轨迹对应的多个向量V,通过慢特征学习方法,对于每一类向量,得到一个对该类向量对应的J维慢特征函数C1;步骤S5,将步骤S3得到的与每条密集轨迹对应的多个向量V分别输入到慢特征函数C1中,基于所述慢特征函数C1的输出向量构建该视频的特征表示f;步骤S6,将所述视频的特征表示f作为特征向量输入到支持向量机SVM分类器中,构造分类器模型;步骤S7,输入一个测试视频,将该测试视频分为多个测试视频段,对于每个测试视频段计算其密集光流场;步骤S8,从所述测试视频段的每个帧中提取多个密集特征点,分别跟踪所述密集特征点在整个视频段中的轨迹,从而得到由所述测试视频段中所有密集特征点对应的密集轨迹组成的密集轨迹集合T′;步骤S9,对于所述密集轨迹集合T′中的每条密集轨迹,提取其中各轨迹点邻域的像素值,构建出与每条密集轨迹对应的多个向量V′;步骤S10,将步骤S9得到的与每条密集轨迹对应的多个向量V′输入到所述慢特征函数C1中,基于所述慢特征函数C1的输出向量得到该测试视频段的特征表示f′;步骤S11,将所述测试视频段的特征表示f′作为特征向量输入到所述步骤S6得到的分类器模型中,即可判断该测试视频段是否为暴力视频段;步骤S12,如果该测试视频中超过一比例的视频段被识别为暴力,则 该测试视频为暴力视频,否则,为非暴力视频。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210340160.1/,转载请声明来源钻瓜专利网。
- 上一篇:一种磺胺嘧啶的合成方法
- 下一篇:噌啉类化合物及其合成方法