[发明专利]一种基于动态自适应生成对抗网络的交通数据修复方法在审
| 申请号: | 202210753282.7 | 申请日: | 2022-06-29 |
| 公开(公告)号: | CN115019510A | 公开(公告)日: | 2022-09-06 |
| 发明(设计)人: | 李金龙;李若南;许伦辉;吴攀 | 申请(专利权)人: | 华南理工大学 |
| 主分类号: | G08G1/01 | 分类号: | G08G1/01 |
| 代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 江裕强 |
| 地址: | 510640 广*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 动态 自适应 生成 对抗 网络 交通 数据 修复 方法 | ||
1.一种基于动态自适应生成对抗网络的交通数据修复方法,其特征在于,包括以下步骤:
S1、通过布置在城市路网干道上的传感器不间断获取原始交通数据,构成原始交通数据矩阵;
S2、利用数据标准化处理原始交通数据矩阵,并通过可视化方式绘制交通数据随时间变化的热力图,确定异常数据位置,并对其进行预处理;
S3、构造时空交通数据矩阵,并按不同的缺失类型和比例随机删除部分数据,构建多个待修复交通数据矩阵;
S4、组建由全连接神经网络构成的生成对抗网络(GAN),并基于博弈思想迭代训练生成器与对抗器;
S5、引入一种动态自适应机制,自动识别生成对抗网络的最佳迭代次数,并利用待修复交通数据矩阵完成生成对抗网络的模型训练;
S6、利用多种模型评价指标评估动态自适应生成对抗网络的修复性能。
2.根据权利要求1所述的一种基于动态自适应生成对抗网络的交通数据修复方法,其特征在于,步骤S1中,采集的原始交通数据包括交通流量、速度或者密度。
3.根据权利要求1所述的一种基于动态自适应生成对抗网络的交通数据修复方法,其特征在于,步骤S2具体如下:
对原始交通数据进行预处理,按如下标准化公式完成不同数据量纲的统一:
其中,为城市路网传感器检测的原始交通数据;为对应传感器观测值的最小值;为对应传感器观测值的最大值;为数据标准化后的原始交通数据;对于优化后的原始交通数据矩阵,通过可视化的方式绘制交通数据随时间变化的热力图,热力图中的0值颜色块和数值超过设定阈值的极大值颜色块的所在位置即是异常数据点位置;进一步通过设置交通数据的阈值,采用网格搜索法逐个对比交通数据与阈值的大小,锁定异常数据的坐标;求取锁定的异常数据的坐标的前后左右数据的均值以替代异常数据,或者直接删除采集锁定的异常数据的传感器所测量的所有数据,剩余的原始交通数据用于构成最终交通数据矩阵。
4.根据权利要求3所述的一种基于动态自适应生成对抗网络的交通数据修复方法,其特征在于,步骤S3具体如下:
采用表示城市路网的拓扑结构,构建最终交通数据矩阵其中,I和J分别表示布置在城市路网干道上的传感器数量与传感器测量的时间点数量;
最终交通数据矩阵中,xij表示第i个传感器在第j个时间点测量的交通数据;
构建最终交通数据矩阵对应的掩码矩阵掩码矩阵中的元素表示交通数据矩阵中对应位置的元素是否缺失的标记值,表示如下:
其中,属于最终交通数据矩阵中被观察到的部分交通数据的集合,Ω属于该集合索引;部分交通数据的集合与最终交通数据矩阵还存在的关系,符号代表矩阵间的哈达玛积。
5.根据权利要求4所述的一种基于动态自适应生成对抗网络的交通数据修复方法,其特征在于,为了模拟自然环境下的数据缺失现象,人为设置掩码矩阵中0的比率和位置,具体如下:
未缺失状况下的掩码矩阵中的数据全为1,缺失率为0;用0替代1表示数据的缺失,设置0的个数占掩码矩阵总个数的比率,该比率即为缺失率;对于随机缺失(RM)情况,掩码矩阵中用0替代1的过程是随机的,所生成的缺失值在最终交通数据矩阵中呈分散分布;而对于聚类缺失(CM)情况,掩码矩阵中0值的分布呈明显的连续分布,典型表现为同一个传感器在一段时间内发生故障,导致采集的交通数据值为0;最后,按照多种缺失比例和两种缺失类型构建多个待修复交通数据矩阵,并统一命名为
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210753282.7/1.html,转载请声明来源钻瓜专利网。





