[发明专利]面向语义片段的目标情感分析方法、装置、设备及介质有效

专利信息
申请号: 202210637534.X 申请日: 2022-06-08
公开(公告)号: CN114707518B 公开(公告)日: 2022-08-16
发明(设计)人: 琚生根;邓航;李怡霖;鄢凡力 申请(专利权)人: 四川大学
主分类号: G06F40/30 分类号: G06F40/30;G06F40/211;G06F40/284;G06N3/04
代理公司: 北京超凡宏宇专利代理事务所(特殊普通合伙) 11463 代理人: 荣颖佳
地址: 610065 四川*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 面向 语义 片段 目标 情感 分析 方法 装置 设备 介质
【说明书】:

发明公开了面向语义片段的目标情感分析方法、装置、设备及介质,应用于目标情感分析领域,所述方法中,将文本样本输入至嵌入层,得到句子词向量、上下文词向量以及目标词向量;利用注意力编码层,对句子词向量、上下文词向量以及目标词向量进行编码,得到对应的隐状态表示;将上下文和目标词的隐状态表示输入至多头注意力层,得到目标上下文语义特征表示;将句子隐状态表示输入至结构化自注意力层,得到句子分段语义特征表示;将目标上下文语义特征表示和句子分段语义特征表示输入至预测层,得到目标词情感预测结果。由此,本发明使模型将注意力集中在各个语义分段,进而抑制了词语上的噪声,提高了目标情感分析任务的准确性。

技术领域

本发明涉及目标情感分析领域,尤其涉及一种面向语义片段的目标情感分析方法、装置、设备及介质。

背景技术

目标情感分析(Targeted Sentiment Analysis,TSA)任务是指判断句子中特定目标的情感极性。

现阶段技术中通过会采用注意力机制来捕获句子中特定目标与句子中其他的词语/词组的联系,即权重。但由于注意力机制仅注重词与词之间的关系,容易出现特定目标与不相干的其他词语的错误搭配。如“The bed is so good and so comfortable butornament of this room is really ugly.”的句子中,注意力机制会错误地为目标“ornament”前后的“good”、“comfortable”及“ugly”分配相同的权重,因而导致目标情感分析任务的精确度受到影响。

发明内容

有鉴于此,本发明提供一种面向语义片段的目标情感分析方法、装置、设备及介质,以改善目标情感分析任务中注意力机制仅注重词与词之间的关系,容易出现特定目标与不相干的其他词语的错误搭配,因而导致目标情感分析任务的精确度受到影响的现状。

第一方面,本发明实施例提供一种面向语义片段的目标情感分析方法,包括:

将获取到的文本样本输入至预设的目标情感分析模型的嵌入层,得到所述文本样本的句子词向量、上下文词向量以及目标词向量;

基于所述目标情感分析模型的注意力编码层,根据所述句子词向量、所述上下文词向量以及所述目标词向量,得到句子隐状态表示、上下文隐状态表示及目标词隐状态表示;

将所述上下文隐状态表示和所述目标词隐状态表示输入至所述目标情感分析模型的多头注意力层,以获取目标词对应的上下文语义特征,得到目标上下文语义特征表示;

将所述句子隐状态表示输入至所述目标情感分析模型的结构化自注意力层,以获取所述句子隐状态对应的多个语义分段的语义特征,得到句子分段语义特征表示;

将所述目标上下文语义特征表示和所述句子分段语义特征表示输入至所述目标情感分析模型的预测层,得到所述文本样本的目标词情感预测结果,其中,所述预测层用于将所述目标上下文语义特征表示池化后,根据所述句子分段语义特征表示与池化处理后的目标上下文语义特征表示的拼接结果进行目标词情感预测。

可选的,在本发明实施例提供的一种实施方式中,所述注意力编码层包括第一多头注意力编码模块、第二多头注意力编码模块及第三多头注意力编码模块,所述第一多头注意力编码模块和所述第二多头注意力编码模块均包括依次相连的第一多头注意力单元和卷积单元,所述第三多头注意力编码模块包括依次相连的第二多头注意力单元和卷积单元;

所述基于所述目标情感分析模型的注意力编码层,根据所述句子词向量、所述上下文词向量以及所述目标词向量,得到句子隐状态表示、上下文隐状态表示及目标词隐状态表示,包括:

基于所述第一多头注意力编码模块和所述第二多头注意力编码模块的第一多头注意力单元,将所述句子词向量、所述上下文词向量分别映射为对应的查询表示、键表示及值表示;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210637534.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top