[发明专利]面向语义片段的目标情感分析方法、装置、设备及介质有效

专利信息
申请号: 202210637534.X 申请日: 2022-06-08
公开(公告)号: CN114707518B 公开(公告)日: 2022-08-16
发明(设计)人: 琚生根;邓航;李怡霖;鄢凡力 申请(专利权)人: 四川大学
主分类号: G06F40/30 分类号: G06F40/30;G06F40/211;G06F40/284;G06N3/04
代理公司: 北京超凡宏宇专利代理事务所(特殊普通合伙) 11463 代理人: 荣颖佳
地址: 610065 四川*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 面向 语义 片段 目标 情感 分析 方法 装置 设备 介质
【权利要求书】:

1.一种面向语义片段的目标情感分析方法,其特征在于,包括:

将获取到的文本样本输入至预设的目标情感分析模型的嵌入层,得到所述文本样本的句子词向量、上下文词向量以及目标词向量;

基于所述目标情感分析模型的注意力编码层,根据所述句子词向量、所述上下文词向量以及所述目标词向量,得到句子隐状态表示、上下文隐状态表示及目标词隐状态表示,其中,所述注意力编码层包括第一多头注意力编码模块、第二多头注意力编码模块及第三多头注意力编码模块,所述第一多头注意力编码模块和所述第二多头注意力编码模块均包括依次相连的第一多头注意力单元和卷积单元,所述第三多头注意力编码模块包括依次相连的第二多头注意力单元和卷积单元;

将所述上下文隐状态表示和所述目标词隐状态表示输入至所述目标情感分析模型的多头注意力层,以获取目标词对应的上下文语义特征,得到目标上下文语义特征表示;

将所述句子隐状态表示输入至所述目标情感分析模型的结构化自注意力层,以获取所述句子隐状态对应的多个语义分段的语义特征,得到句子分段语义特征表示;

将所述目标上下文语义特征表示和所述句子分段语义特征表示输入至所述目标情感分析模型的预测层,得到所述文本样本的目标词情感预测结果,其中,所述预测层用于将所述目标上下文语义特征表示池化后,根据所述句子分段语义特征表示与池化处理后的目标上下文语义特征表示的拼接结果进行目标词情感预测,所述预测层包括平均池化层和全连接层;

所述基于所述目标情感分析模型的注意力编码层,根据所述句子词向量、所述上下文词向量以及所述目标词向量,得到句子隐状态表示、上下文隐状态表示及目标词隐状态表示,包括:

基于所述第一多头注意力编码模块和所述第二多头注意力编码模块的第一多头注意力单元,将所述句子词向量、所述上下文词向量分别映射为对应的查询表示、键表示及值表示;

基于所述第三多头注意力编码模块的第二多头注意力单元,将所述目标词向量映射为所述目标词向量对应的键表示和值表示,并将所述上下文词向量映射为所述目标词向量对应的查询表示;

根据所述句子词向量、所述上下文词向量以及所述目标词向量分别对应的查询表示、键表示及值表示,得到句子语义特征表示、上下文语义特征表示及目标语义特征表示;

将所述句子语义特征表示、所述上下文语义特征表示及所述目标语义特征表示分别输入至所述第一多头注意力编码模块、所述第二多头注意力编码模块及所述第三多头注意力编码模块的卷积单元以进行逐点卷积变换,得到句子隐状态表示、上下文隐状态表示及目标词隐状态表示;

所述将所述上下文隐状态表示和所述目标词隐状态表示输入至所述目标情感分析模型的多头注意力层,以获取目标词对应的上下文语义特征,得到目标上下文语义特征表示,包括:

利用所述目标情感分析模型的多头注意力层,将所述目标词隐状态表示映射为所述目标词隐状态对应的键表示和值表示,并将所述上下文隐状态表示映射为所述目标词隐状态表示对应的查询表示;

利用所述目标词隐状态表示对应的查询表示、键表示和值表示,得到目标上下文语义特征表示;

所述将所述目标上下文语义特征表示和所述句子分段语义特征表示输入至所述目标情感分析模型的预测层,得到所述文本样本的目标词情感预测结果,包括:

将所述目标上下文语义特征表示输入至所述平均池化层,得到池化处理后的目标上下文语义特征表示;

将所述句子分段语义特征表示与所述池化处理后的目标上下文语义特征表示连接,得到所述文本样本对应的文本表示;

将所述文本表示输入至所述全连接层,得到所述文本表示对应的分类输出;

基于预设分类器,根据所述文本样本对应的分类输出计算所述文本样本的目标词情感预测结果。

2.根据权利要求1所述的面向语义片段的目标情感分析方法,其特征在于,所述嵌入层包括已经过预训练的基于转换器的双向编码表征模型。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210637534.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top