[发明专利]一种带有智能决策的多目的地无人机实时航迹规划方法在审
申请号: | 202210575247.0 | 申请日: | 2022-05-25 |
公开(公告)号: | CN114779820A | 公开(公告)日: | 2022-07-22 |
发明(设计)人: | 马建伟;马晓毓;臧绍飞;李兴海;吕进锋;马超 | 申请(专利权)人: | 河南科技大学 |
主分类号: | G05D1/10 | 分类号: | G05D1/10 |
代理公司: | 郑州豫鼎知识产权代理事务所(普通合伙) 41178 | 代理人: | 轩文君 |
地址: | 471000 河南*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 带有 智能 决策 目的地 无人机 实时 航迹 规划 方法 | ||
1.一种带有智能决策的多目的地无人机实时航迹规划方法,其特征在于,包括以下步骤:
S1:初始化无人机、目的地及环境信息;
S2:构造多目的地智能决策机制;
S3:选择最优目的地;
S4:使用RHC_eS进行航迹规划;
S5:更新无人机、目的地及环境信息;
S6:采取边走边决策策略,循环执行步骤二到步骤五,直到到达最后一个目的地。
2.根据权利要求1所述的一种带有智能决策的多目的地无人机实时航迹规划方法,其特征在于,所述S1中包括对无人机初始位置、目的地的位置、各目的地的物资储量和物资消耗速度范围、环境中的障碍物位置信息的获取。
3.根据权利要求1所述的一种带有智能决策的多目的地无人机实时航迹规划方法,其特征在于,所述S2中多目的地智能决策机制构造过程如下:
S2-1:对蚁群算法涉及到的信息素、蚁群数量等参数初始化;
S2-2:设定蚂蚁从固定起始地出发;
S2-3:计算目的地间的转移概率公式如下:
其中,α为信息素因子的重要程度,γ是启发式因子的重要程度,τij(t)表示目的地i和j在第t时刻的信息素浓度,ηij为启发式函数,Jc(i)为蚂蚁c下一步允许选择的城市集合,启发式函数公式如下:
式中,dij表示目的地i和j之间的距离,环境中信息素更新公式如下:
其中,ρ为信息素挥发因子,表示蚂蚁c在目的地i和j之间留下的信息素浓度,计算公式如下:
其中,Q表示常系数,Mc表示,蚂蚁c在走完所有目的地后的总损耗。
S2-4:使用轮盘赌法选择下一个目的地。
S2-5:当蚂蚁走完所有目的地时,创建目标函数并计算最小损耗。多目的地预测损耗目标函数如下:
其中,目的地总个数为n,Si为目的地i的战略重要程度,它采用层次分析法中的九分制,由专家打分得出,mi为目的地i的损耗量,它的计算公式如下:
式中,qi表示目的地i的剩余物资量,它的计算公式如下:
式中,Gi和分别表示目的地i的物资量和物资平均消耗速度,为无人机从起始位置飞行到目的地i所需的预计总时长,物资平均损耗速度公式如下:
其中,Vg_imin和Vg_imax分别表示目的地i物资消耗的最小和最大速度。
为了计算无人机到达各目的地的预计时间,建立物资运送时间矩阵A2,公式如下所示:
式中Vmax和Vmin分别为无人机的最大和最小速度,A1表示最短航迹矩阵,为了减少计算量,保证实时性要求,两个目的地之间的距离使用欧式距离,公式如下所示:
其中,n为目的地个数(不包括起始地),Li,j表示从目的地i到目的地j的欧式距离,且当i=j时,Li,j=0,由于采用欧式距离,两目的地之间的来回距离是一样的,即最短航迹矩阵为对称矩阵,根据最短航迹矩阵建立物资运送时间矩阵A2展开如下:
其中,t表示无人机从目的地i到目的地j的平均飞行时间,物资运送时间矩阵也为对称矩阵。
S2-6:记录最小损耗对应的目的地序列并更新信息素。
S2-7:重复S2-2—S2-6直到达到迭代次数,输出最小损耗及对应的目的地序列。
4.根据权利要求1所述的一种带有智能决策的多目的地无人机实时航迹规划方法,其特征在于,所述S4中使用RHC_eS进行航迹规划的过程为:
S4-1:构建路径扩充机制,生成目标方向(式(12)中θ=0°时)滚动时间窗内的参考航迹,公式如下。
式中,θ是目标方向与飞行方向的夹角,β是目标方向与X轴方向的夹角,当飞行方向在目标方向和X轴正方向之间时,角度为β-θ,当飞行方向在目标方向和Y轴正方向之间时,角度为β+θ,Lmax表示无人机一秒的最大飞行距离,Tw是滚动时间窗。
S4-2:利用判断步骤S4-1中生成航迹是否可行,其中,Luav是无人机的翼展长度,障碍物的半径是rd,位置是(xd,yd)。
S4-3:当目标方向航路不可行时,利用路径扩充机制生成多方向(θ=30°,60°,90°)参考航迹。
S4-4:对参考航迹进行平均交叉和单点交叉操作,平均交叉公式如下:
其中,(f(x,y))m表示第m条参考航迹,参考航迹数量与搜索方向个数一致,即每个搜索方向上产生一条参考航迹,再对f(x,y)和fac(x,y)进行单点交叉,公式定义如下:
fsc(x,y)={f(xi,yi),fac} (14)
注意,式中{·}运算用来表示对两条航路进行单点交叉。
S4-5:将航路f(x,y)、fac(x,y)、和fsc(x,y)整合后,一起进行定向变异操作,过程为:首先,用变异概率pm决定是否进行变异,接着,对需要变异的航路,随机选取变异航段并在该航段处,从θ=30°时,对应的两个方向和θ=0°时对应的目标方向,三个方向上随机选择一个方向,再按照路径扩充机制,在变异航段上,按选定方向重新生成参考航迹,得到变异后的新航路fdv(x,y)。
S4-6:将路径扩充及交叉、变异后的所有航路整合,得预测航路总群如下:
fz(x,y)=[f(x,y),fac(x,y),fsc(x,y),fdv(x,y)] (15)
S4-7:使用二次贝塞尔曲线对航路进行平滑处理得:
fz(x(k),y(k))=(1-k)2(x0,y0)+2(1-k)k(x1,y1)+k2(x2,y2)k∈[0,1] (16)
其中,k是位置参数,(x0,y0)、(x1,y1)、(x2,y2)分别表示二次贝塞尔曲线的首端、中端和末端控制点坐标,fz(x,y)中的航迹点作为二次贝塞尔曲线的控制点。
S4-8:构建最短航路目标函数,并利用序列二次规划法求取最短航路F(X,Y)*及对应的每一时间窗内的最优航路段fsz(x,y)*,最后将其整合为最优航路fflight,最短航路目标函数如下所示:
其中,||fsz(x,y)||代表平滑预测航路总长,Lf是最后预测航迹点到目标点的直线距离,vmax是无人机的最大飞行速度,rflight表示航道曲率半径,ruav表示无人机的最小转弯半径,由于平滑预测航路由曲线组成,长度很难准确计算,因此用折线长度近似估算曲线长度,平滑预测航路长度估算如下式所示:
注意,当b=w时,(xw,yw)表示平滑预测航路的终点,无人机的最终目的地到最后航迹点的距离计算如下:
其中,(xf,yf)是终点坐标。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南科技大学,未经河南科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210575247.0/1.html,转载请声明来源钻瓜专利网。