[发明专利]不平衡小样本数据的滚动轴承故障诊断方法及系统有效

专利信息
申请号: 202210509748.9 申请日: 2022-05-11
公开(公告)号: CN114993677B 公开(公告)日: 2023-05-02
发明(设计)人: 姜明顺;王金喜;张艺蓝;张法业;张雷;贾磊;隋青美 申请(专利权)人: 山东大学
主分类号: G01M13/045 分类号: G01M13/045;G06F18/241;G06N3/0464;G06N3/0455;G06N3/08
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 董雪
地址: 250061 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 不平衡 样本 数据 滚动轴承 故障诊断 方法 系统
【说明书】:

发明公开了一种不平衡小样本数据的滚动轴承故障诊断方法及系统,包括:获取滚动轴承的声纹信号数据;对采集到的数据进行降维、位置编码和填充处理;基于预训练的故障诊断模型以及所述滚动轴承的声纹信号数据,进行故障诊断,得到滚动轴承的故障类型;其中,所述故障诊断模型由预训练好的基于多头自注意力机制的自“编码‑解码”模型中的编码部分与多头自注意力机制分类器搭建。本发明通过基于多头自注意力机制的自“编码‑解码”模型实现了模型预训练,解决了将多头自注意力机制应用到多模态任务数据需求问题,并有效提升了模型训练效率与故障诊断准确率。

技术领域

本发明涉及轴承故障诊断技术领域,尤其涉及一种不平衡小样本数据的滚动轴承故障诊断方法及系统。

背景技术

本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。

据不完全统计,大约30%的旋转机械故障是由滚动轴承引起的。滚动轴承在运行状态下,其裂纹、表面损伤和磨损等故障都会引起接触面的弹性冲击从而导致声纹信号的产生,同时产生大量的故障信息。基于数据驱动的深度学习方法需要大量的数据支持,这在故障诊断领域实现起来比较困难。工业数据的获取存在严重的样本异质性问题:正常数据容易获取,但特定故障数据的获取成本较高。因此,研究不平衡小数据样本的故障诊断是必要的。

近几年,Transformer模型通过多头自注意力机制从本质上提升了深度学习网络模型与学习过程的可解释性,基于此的ViT模型打破了深度学习在机器视觉与自然语言处理之间的壁垒,同时也为故障诊断任务提供了新的研究思路。

但是,将多头自注意力机制引入轴承故障诊断存在诸多困难:

(1)多头自注意力机制自身不具备降维能力,仅用多头自注意力机制网络难以实现诸如自编码器等网络结构;

(2)多头自注意力机制模块缺乏传统方法的预设偏置,例如卷积神经网络的平移不变性等,因此对于数据的需求量大,在小样本数据的条件下难以学习到数据表征;

(3)将多头自注意力机制直接运用在轴承声纹信号这类非结构化序列数据会使得模型维度过于庞大,消耗计算资源过多。

发明内容

为了解决上述问题,本发明提出了一种不平衡小样本数据的滚动轴承故障诊断方法及系统,解决了将多头自注意力机制网络应用于故障诊断任务的数据需求与输入数据维度高的问题,得到的故障诊断模型泛化性强,故障识别准确度高,可以应用于不平衡小样本数据的故障诊断。

在一些实施方式中,采用如下技术方案:

一种不平衡小样本数据的滚动轴承故障诊断方法,包括:

获取滚动轴承的声纹信号数据;

对采集到的数据进行降维、位置编码和填充处理;

基于预训练的故障诊断模型以及所述滚动轴承的声纹信号数据,进行故障诊断,得到滚动轴承的故障类型;

其中,所述故障诊断模型由预训练好的基于多头自注意力机制的自“编码-解码”模型中的编码部分与多头自注意力机制分类器搭建。

作为可选的方式,对采集到的数据进行降维处理,具体包括:

将一维声纹信号利用Python内置的Reshape函数转变成二维数组。

作为可选的方式,对采集到的数据进行填充处理,具体包括:

在设定的位置对二维数组进行零填充。

作为可选的方式,所述基于多头自注意力机制的自“编码-解码”模型包括:依次设置的原始信号、编码器层、解码器层和重构信号;每个编码器层和每个解码器层均由多头自注意力块和前馈神经网络组成;所述编码器层输出的数据在输入解码器层之前经过再编码操作。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210509748.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top