[发明专利]基于云模型和模糊贝叶斯网络的火灾风险评估方法及装置有效

专利信息
申请号: 202210143875.1 申请日: 2022-02-17
公开(公告)号: CN114186900B 公开(公告)日: 2022-06-03
发明(设计)人: 向治锦;黄国忠;高学鸿;欧盛南;陈小龙 申请(专利权)人: 北京科技大学
主分类号: G06Q10/06 分类号: G06Q10/06;G06K9/62
代理公司: 北京市广友专利事务所有限责任公司 11237 代理人: 张仲波
地址: 100083*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 模型 模糊 贝叶斯 网络 火灾 风险 评估 方法 装置
【说明书】:

本发明公开了一种基于云模型和模糊贝叶斯网络的火灾风险评估方法及装置,涉及火灾风险评估技术领域。包括:获取电气火灾风险监测的历史数据和待评估数据;根据历史数据,构建电气火灾风险评估的贝叶斯网络的网络结构;根据历史数据以及启发式高斯云变换算法,确定状态评价标准云;根据待评估数据以及状态评价标准云,得到不同时间粒度下待评估数据中各指标监测数据的状态隶属度;根据状态隶属度以及构建好的贝叶斯网络,得到多数据融合的、不同时间粒度下的电气火灾风险评估结果。本发明针对电气火灾风险评估中存在的风险状态概率表示及计算的不确定性问题,引入模糊贝叶斯网络和云模型方法,以解决不确定性因素影响下的电气火灾风险评估问题。

技术领域

本发明涉及火灾风险评估技术领域,特别是指一种基于云模型和模糊贝叶斯网络的火灾风险评估方法及装置。

背景技术

电气火灾事故在我国频发,防控形势十分严峻,科学地评估电气火灾风险,对于电气火灾事故的预警和防控具有重要意义。电气火灾事件是一个复杂系统,电气火灾事故的致灾因子复杂,各节点具有多种状态,电气火灾发生前通常会出现多因素下的异常征兆信息, 如电流增大、电压波动、温升等,其突发性、随机性与不确定性使得人们对于电气火灾事件的风险评估和预测非常困难。贝叶斯网络具有良好的不确定性推理能力,是用于评估推理的理想建模方法,可以对多因素影响下的火灾风险进行定量分析,并清晰地展示致灾因子的关系和灾变的过程,已经被一些学者应用于电气火灾的风险评估中。

现有技术中,如专利CN112036653A一种基于贝叶斯网络的火灾风险预警方法及系统,该发明是一种基于贝叶斯网络的火灾风险预警方法,该方法分别以风险源、火灾事件状态、火灾风险3种变量为行变量和列变量,构建关联矩阵;遍历该矩阵,用有向边将对应的行变量与列变量连接起来,最终形成各专家都普遍接受的网络结构;按照此方法,建立风险源—火灾事件状态、火灾事件状态—火灾事件状态、火灾事件状态—火灾风险3个子网络,根据所建立的3个子网络,以火灾事件状态变量与承灾体状态变量为公共节点,合并以上3个子网络,形成火灾事件预测的贝叶斯网络模型。

专利CN110059963A一种基于模糊多态贝叶斯网络的隧道风险评价方法,公开了一种基于模糊多态贝叶斯网络的隧道风险评价方法,提出基于专家判断的信心指数、权重指数和概率区间相结合的调查方法,该方法根据已有隧道事故案例构建隧道风险事故树,得出隧道风险事故的基本事件以及在当前技术水平下的各个因素的出现概率,并由事故树构建多态贝叶斯网络。将专家调查所得概率与案例事故所得概率利用主客观法,得出条件概率,从而提出基于多态的模糊贝叶斯网络条件概率构建方法及隧道风险概率计算方法

专利CN113505448A一种基于改进贝叶斯网络的风电机组动态可靠性评价方法,包括基于故障树和云模型构建风电机组的单纯可靠性贝叶斯网络;采用无标度网络对单纯可靠性贝叶斯网络进行优化得到改进的贝叶斯网络;对改进的贝叶斯网络进行动态贝叶斯推理;根据改进的贝叶斯网络与动态推理过程对机组可靠性进行定量评估。

综上,现在少有研究将模糊贝叶斯的方法运用于电气火灾预警或风险评估中,传统的贝叶斯网络评价火灾风险有以下不足:根节点对应参数的状态标准划分(如低、中、高风险)多采用主观设定或专家评价法,存在较强的主观性。监测参数的状态界定多采用阈值法的“硬划分”,无法体现处于两相邻状态之间的数值究竟该划分给何种类别,即无法体现概念的模糊性。对于大量具有时序性的监测数据,不同时间粒度数据的信息挖掘程度不够,且没有考虑数据的随机性。在实际评估中,由于电气火灾事件系统的复杂性及数据的不完备等诸多原因,往往不能精确地获取节点各状态的先验概率,且很难能得到一个准确的风险评估数值。因此,如何在不确定性因素影响下,对电气火灾风险进行评估是亟需解决的问题。

发明内容

本发明针对现有技术如何在不确定性因素影响下,对电气火灾风险进行评估是亟需解决的问题,提出了本发明。

为解决上述技术问题,本发明提供如下技术方案:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京科技大学,未经北京科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210143875.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top