[发明专利]数据处理方法、装置、设备及介质在审
申请号: | 202111488541.X | 申请日: | 2021-12-07 |
公开(公告)号: | CN114139647A | 公开(公告)日: | 2022-03-04 |
发明(设计)人: | 张立超 | 申请(专利权)人: | 中国建设银行股份有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06Q10/06 |
代理公司: | 北京东方亿思知识产权代理有限责任公司 11258 | 代理人: | 贺琳 |
地址: | 100033 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 数据处理 方法 装置 设备 介质 | ||
1.一种数据处理方法,其特征在于,所述方法包括:
获取目标用户的待处理数据;
基于评分模型中第一网络计算的所述待处理数据的几何间隔,确定所述目标用户的第一目标评分;
基于评分模型中第二网络的每一决策树的叶节点与所述待处理数据的对应关系,确定所述目标用户的第二目标评分;
基于评分模型中第三网络的多个分类器对所述待处理数据进行分类计算的结果,确定所述目标用户的第三目标评分;
确定所述第一目标评分、所述第二目标评分、所述第三目标评分,分别与第一预设评分权重的乘积之和,为所述目标用户的信用评分;
其中,所述第一目标评分、所述第二目标评分、所述第三目标评分和所述信用评分均用于评价所述目标用户的信用的优劣程度。
2.根据权利要求1所述的方法,其特征在于,所述基于评分模型中第一网络计算的所述待处理数据的几何间隔,确定所述目标用户的第一目标评分,包括:
将所述待处理数据输入至评分模型中的第一网络,通过所述第一网络计算所述待处理数据的几何间隔,并基于所述待处理数据的几何间隔对所述待处理数据进行分类计算,得到多个第一计算结果,并确定所述多个第一计算结果的平均值为所述目标用户的第一目标评分。
3.根据权利要求1所述的方法,其特征在于,所述基于评分模型中第二网络的每一决策树的叶节点与所述待处理数据的对应关系,确定所述目标用户的第二目标评分,包括:
将所述待处理数据输入至评分模型中的第二网络,通过将所述待处理数据中不同维度的数据映射在所述第二网络中每一决策树的叶节点上,基于每一叶节点对应的权重对所述待处理数据进行深度学习分类计算,得到多个第二计算结果,确定所述多个第二计算结果的平均值为所述目标用户的第二目标评分。
4.根据权利要求1所述的方法,其特征在于,所述基于评分模型中第三网络的多个分类器对所述待处理数据进行分类计算的结果,确定所述目标用户的第三目标评分,包括:
将所述待处理数据输入至评分模型中的第三网络,基于所述第三网络中多个不同的分类器,对所述待处理数据进行分类计算,得到多个第三计算结果,并确定所述多个第三计算结果的平均值为所述目标用户的第三目标评分。
5.根据权利要求1所述的方法,其特征在于,在所述基于评分模型中第一网络计算的所述待处理数据的几何间隔,确定所述目标用户的第一目标评分之前,所述方法还包括:
获取训练样本集,所述训练样本集中包括多个待处理数据样本及其每一待处理数据样本对应的标签评分;
利用所述训练样本集中的待处理数据样本训练预设评分模型,得到训练后的评分模型。
6.根据权利要求5所述的方法,其特征在于,所述评分模型包括第一评分子模型、第二评分子模型和第三评分子模型;在得到训练后的评分模型之前,所述方法还包括:
基于预设抽样法,将所述训练样本集划分成第一训练样本集,第二训练样本集和第三训练样本集;
利用所述第一训练样本集中的第一待处理数据样本训练预设的第一评分子模型,得到训练后的第一评分子模型;
利用所述第二训练样本集中的第二待处理数据样本训练预设的第二评分子模型,得到训练后的第二评分子模型;
利用所述第三训练样本集中的第三待处理数据样本训练预设的第三评分子模型,得到训练后的第三评分子模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国建设银行股份有限公司,未经中国建设银行股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111488541.X/1.html,转载请声明来源钻瓜专利网。
- 上一篇:显示面板及显示装置
- 下一篇:一种多线结构光焊缝跟踪传感器的参数标定方法