[发明专利]一种面向大场景遥感图像分类的类指定多模联合表示方法有效
| 申请号: | 202111160930.X | 申请日: | 2021-09-30 |
| 公开(公告)号: | CN113850216B | 公开(公告)日: | 2022-05-17 |
| 发明(设计)人: | 刘天竹;谷延锋 | 申请(专利权)人: | 哈尔滨工业大学 |
| 主分类号: | G06V20/13 | 分类号: | G06V20/13;G06V10/774;G06V10/764;G06K9/62;G06N20/00 |
| 代理公司: | 哈尔滨华夏松花江知识产权代理有限公司 23213 | 代理人: | 时起磊 |
| 地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 面向 场景 遥感 图像 分类 指定 联合 表示 方法 | ||
一种面向大场景遥感图像分类的类指定多模联合表示方法,本发明涉及多模遥感图像联合表示方法。本发明的目的是为了提高现有大场景遥感图像的分类精度。过程为:一、输入覆盖区域相同的多模遥感图像,以及相应的地物标签图,构造多模遥感图像的类指定多模联合表示模型;所述多模遥感图像包括多光谱遥感图像和高光谱遥感图像;二、采用乘数交替方向法求解多模遥感图像的类指定多模联合表示模型,得到类指定跨模字典;三、输入大场景多光谱遥感图像,利用多光谱字典对输入的大场景多光谱遥感图像进行稀疏表示,学习得到一致稀疏表示系数矩阵;四、重构得到大场景的高判别性高光谱图像。本发明用于遥感图像分类领域。
技术领域
本发明涉及多模遥感图像联合表示方法。
背景技术
大场景遥感图像的精细分类在光学遥感应用中越来越重要。作为两种典型的光学遥感数据,多光谱图像和高光谱图像具有互补的特征:多光谱图像幅宽大,重访周期短,但波段数少,导致光谱可分性较弱。高光谱图像幅宽窄,重访周期长,但其具有数百个波段,因此具备精细分类的能力。为了有效利用多模遥感图像(高光谱图像和多光谱图像)的优势,近年来有学者对多模态遥感图像的联合表示进行了研究,多模态遥感图像的联合表示就是通过学习覆盖范围相同的高光谱图像和多光谱图像之间的关系,来重建大场景多光谱图像所对应的模拟高光谱图像,从而将高光谱图像的精细分类能力迁移到大场景多光谱图像上,实现分类性能的提升。
当前,多模态联合表示方法主要有两类,一种是基于深度学习的方法,一种是基于稀疏表示的方法。基于深度学习的方法通常难以重构多光谱图像光谱覆盖范围之外的波段,基于稀疏表示的方法虽然没有上述缺点,但是当前方法仅以高光谱图像的重构为目标,并没有考虑后续的分类应用,而且这些方法大多数是无监督的,没有考虑对标签信息的利用。
发明内容
本发明的目的是为了提高现有大场景遥感图像的分类精度,提出了一种面向大场景遥感图像分类的类指定多模联合表示方法。
一种面向大场景遥感图像分类的类指定多模联合表示方法具体过程为:
步骤一、输入覆盖区域相同的多模遥感图像,以及相应的地物标签图,构造多模遥感图像的类指定多模联合表示模型;
所述多模遥感图像包括多光谱遥感图像和高光谱遥感图像;
步骤二、采用乘数交替方向法求解步骤一构造的多模遥感图像的类指定多模联合表示模型,得到类指定跨模字典;
所述类指定的跨模字典包括多光谱字典和高光谱字典;
步骤三、输入大场景多光谱遥感图像,利用步骤二得到的多光谱字典对输入的大场景多光谱遥感图像进行稀疏表示,学习得到一致稀疏表示系数矩阵;
所述输入的大场景多光谱遥感图像的覆盖区域包含步骤一中多光谱遥感图像的覆盖区域;
步骤四、利用步骤二得到的高光谱字典和步骤三得到的一致稀疏表示系数矩阵,重构得到大场景的高判别性高光谱图像。
本发明的有益效果为:
本发明可以从构造有监督约束入手解决上述问题(基于深度学习的方法通常难以重构多光谱图像光谱覆盖范围之外的波段,基于稀疏表示的方法虽然没有上述缺点,但是当前方法仅以高光谱图像的重构为目标,并没有考虑后续的分类应用,而且这些方法大多数是无监督的,没有考虑对标签信息的利用。);在多模联合表示的过程中引入了标签信息,利用训练样本的标签构造分类约束,同时,利用训练样本标签和字典标签的类别一致关系构造判别性稀疏表示系数约束,从而使学习的跨模态字典既具有表示性又具有判别性;即构造类指定的多模遥感图像联合表示模型能够从理论上显著提升重构高光谱图像的分类性能;因此,重构得到的大场景高光谱图像具备更好的判别性,从而显著提升大场景分类精度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111160930.X/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序





