[发明专利]一种TiB2 在审
| 申请号: | 202111160705.6 | 申请日: | 2021-09-30 |
| 公开(公告)号: | CN113846250A | 公开(公告)日: | 2021-12-28 |
| 发明(设计)人: | 李菊英;梅青松 | 申请(专利权)人: | 武汉轻工大学 |
| 主分类号: | C22C21/00 | 分类号: | C22C21/00;C22C32/00;C22C1/10;B21B1/38 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 430023 湖北省武*** | 国省代码: | 湖北;42 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 tib base sub | ||
本发明属于TiB2增强铝基复合材料制备领域,公开了一种TiB2增强铝基复合材料及其制备方法,按重量百分比计,该复合材料的原料包括TiB2和基体材料;该方法包括以下步骤:分别对基体材料和不锈钢板进行预处理;将预处理后的不锈钢板的光洁面对折并压制成不锈钢封套;将TiB2置于预处理后的基体材料上,将基体材料对折,使基体材料包裹住TiB2;对不锈钢封套进行轧制,每轧制一道次后沿所述不锈钢封套的长度方向进行对折,再轧制下一道次。沿同一个方向上轧制7次,然后转换90°方向进行轧制,每轧制一道次后沿所述不锈钢封套的长度方向进行对折。然后又旋转为第一次的方向在轧制7次,再旋转90°轧制一次,直到设定道次。本发明可在室温下制备出不同含量强化相的TiB2/Al复合材料,制备的TiB2/Al复合材料强化相分布均匀,强化效果显著,没有第二相生成。
技术领域
本发明属于TiB2增强铝基复合材料制备领域,更具体地,涉及一种TiB2增强铝基复合材料及其制备方法。
背景技术
用于强化铝合金的常规陶瓷材料包括碳化物、硼化物、氮化、和氧化物,在这些强化颗粒中,二硼化钛(TiB2)是一种十分优秀且具有吸引力的候选材料。TiB2是钛和硼组成的最稳定的化合物,以共价键连接,其晶胞结构为六方晶胞结构。TiB2拥有良好的物理及化学性能,其熔点为2980℃,模量可达到565GPa,硬度可达到2500HV。除此之外,TiB2拥有良好的导电性、导热性、抗腐蚀性及热稳定性,是一种十分优秀难得的颗粒增强相。TiB2增强铝基复合材料在航空航天、汽车制造、电子仪器和军事等领域具有广阔的应用前景。
公开了一种高强度TiB2颗粒增强的铝基复合材料板材制备工艺。具体工艺为:将A356合金材料放入石墨坩锅中加热到一定温度后,将干燥的一定量的氟硼酸钾加入熔融的A356合金之中并反应一定时间,当反应结束后降至一定温度后浇铸至挤压模具之中,并降至一定温度后直接按一定方式挤压,挤压结束后直接进行一定方式轧制后得到该板材。通过此制备工艺制备的TiB2颗粒增强A356的复合材料板材基体晶粒较小,颗粒分布均匀,杂质少,板材抗拉强度得到了极大的提升,塑性也得到了提升。
CN109957685A公开了一种高分散TiB2/A356复合材料制备方法,属于材料制备技术领域。增强颗粒质量百分比组份,TiB2:3.0-10.0%,基体合金质量百分比组份Si:6.5-7.5%,Mg:0.35-0.45%,余量为Al,复合材料增强颗粒为尺寸小于1μm的TiB2颗粒,基体物像组成主要包括α-Al、Mg2Si、共晶Si。采用熔体自蔓延直接合成法制备Al-TiB2中间合金,以Al粉、Ti粉、TiO2、H3BO3为原料,制备质量分数稳定,平均尺寸较小的TiB2颗粒。本发明采用两步法制备复合材料,先制备Al-TiB2中间合金,避免了直接在Al-Si-Mg基体合金中进行原位反应,从而对合金成分造成损耗,进而以Al-TiB2中间合金为基体,加入铝锭调整成分,制备复合材料。
已公开的现有技术,制备TiB2增强铝基复合材料的方法都是采用在铝熔体里添加增强相的方法,增强体TiB2颗粒可选择直接添加或反应生成。这种制备方法温度很高,在铝的熔点以上,因此存在合金元素烧损,生产条件恶劣,能耗较高等缺点。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉轻工大学,未经武汉轻工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111160705.6/2.html,转载请声明来源钻瓜专利网。
- 一种铝电解用TiB<sub>2</sub>-TiB/Ti梯度复合多孔阴极材料及其制备方法
- 一种TiB2金属陶瓷耐磨涂层的制备方法
- 添加稀土La的原位TiB<sub>2</sub>增强铜基复合材料及其制备方法
- 一种铝电解用TiB2/TiB复合陶瓷阴极材料及其制备方法
- 一种原位合成CNTs增韧TiB2基超高温陶瓷材料的制备方法
- 一种TiB-TiC-TiB<sub>2</sub>-B<sub>4</sub>C复合陶瓷的快速制备方法
- 一种TiB-TiB<sub>2</sub>复合陶瓷的快速制备方法
- 一种原位合成硼化钛增强铜基复合材料及其制备方法和应用
- 具有结构梯度的TiB<base:Sub>2
- 一种具有均匀致密TiB<base:Sub>2
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





