[发明专利]基于布谷鸟算法改进人工势场法的四旋翼编队避障方法在审

专利信息
申请号: 202111048914.1 申请日: 2021-09-08
公开(公告)号: CN113687662A 公开(公告)日: 2021-11-23
发明(设计)人: 曹越;朱彦瑾;王辉烨;蔡晨晓 申请(专利权)人: 南京理工大学
主分类号: G05D1/10 分类号: G05D1/10
代理公司: 南京理工大学专利中心 32203 代理人: 朱炳斐
地址: 210094 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 布谷鸟 算法 改进 人工 势场法 四旋翼 编队 方法
【说明书】:

发明公开了一种基于布谷鸟算法改进人工势场法的四旋翼编队避障方法,该方法在传统人工势场法的基础上改进斥力函数,在斥力函数中引入目标点到障碍物的距离,使得当终点附近存在障碍物时四旋翼也可到达终点,从而解决终点不可达性问题。此外,通过障碍物膨胀法,围绕障碍物划分一定的安全裕量,避免四旋翼发生碰撞,确保四旋翼安全避开障碍物。当机器人陷入局部极小值时,或者处于狭窄环境中时,可以通过布谷鸟算法规划路径,本发明对布谷鸟算法进行了改进,通过差分进化的可变步长的布谷鸟算法,提高了人工势场算法路径规划的适应性,解决了布谷鸟算法存在的问题,使得规划路径更优、节点更少、迭代次数更少。

技术领域

本发明属于四旋翼技术领域,特别是一种基于布谷鸟算法改进人工势场法的四旋翼编队避障方法。

背景技术

随着现代技术的飞速发展,传感器、微电子以及通信等关键技术不断革新,无人机因其机动性好、控制结构简单的优点在各行各业取得了极为广泛的应用。

随着任务复杂度的提升,四旋翼飞行器编队的必要性愈发显著。由于室内环境下缺少GPS信号,高精度的室内定位系统开发技术难度高。目前已有研究在四旋翼编队飞行中引入了运动捕捉系统VICON,开发出四旋翼无人机室内编队控制系统。

人工势场法计算简单、实时性高,并且规划出来的路径一般是平滑且安全的,常被应用于机器人路径规划的避障中。但其本身存在缺点,包括目标不可达问题、振荡问题、局部极值问题。人工势场法是一种利用虚拟力在已知环境中进行路径规划的算法,因其运算速度快和高效简单而广泛应用。该算法将环境中障碍物与禁止进入的区域设为斥力点;将终点与可以进入的区域设为引力点。因此人工势场法存在以下问题:其一,当无人机受到来自斥力和引力的合力为0时,即斥力引力大小相同、方向相反时,无人机会停止运动,此时陷入了局部极小点。人工势场法很容易陷入这种局部极小点,在实际过程中,当障碍物、目标点和无人机处于同一直线时,无人机接近障碍物的过程中由于斥力不断增加、引力不断减小,因此很可能会出现斥力与引力大小相同、方向相反的情况,此时人工势场法将不再有效。其二,理论上当无人机到达目标点附近时引力与斥力都会很小,此时若忽略障碍物的斥力则无人机在到达目标点时引力刚好为0。然而,在实际应用中,目标点附近一般总是存在障碍物,当无人机接近目标点时,引力减小相比于斥力可忽略不计,此时无人机会向斥力方向运动,从而在目标点附近不断振荡循环而无法到达目标点。

有的研究提出建立在改进人工势场模型上的基于遗传算法的最优路径搜索方法。通过人工势场法生成路径,再通过遗传算法评价各条路径的优劣程度,进而搜索出最优路径。从而解决人工势场法中由于局部最优解产生的死锁问题。但是遗传算法的局部搜索能力较差,耗时较长。

还有的研究采用改进蚁群和人工势场法相结合的混合路径规划。通过粒子群参数优化的改进蚁群算法求解全局路径规划,但是收敛速度较慢、优化效率低;在求解局部路径规划时,通过引入目标距离相关函数改进的斥力函数,解决不可达性问题。

布谷鸟搜索算法是一种新兴启发式群智能算法,因其给定参数较少、算法易实现以及全局寻优能力强的优点而广泛使用。然而,布谷鸟算法应用于人工势场算法中因其本身存在的收敛精度不高、局部搜索结果不优的缺陷而出现不理想的情况。在人工势场算法中使用布谷鸟算法将放大其局部搜索能力弱的缺点,这样规划出的路径虽然能较好解决人工势场法的缺陷,但存在波折多、路径长、节点多等缺点。

发明内容

本发明的目的在于针对上述现有技术存在的问题,提供一种基于布谷鸟算法改进人工势场法的四旋翼编队避障方法。

实现本发明目的的技术解决方案为:一种基于布谷鸟算法改进人工势场法的四旋翼编队避障方法,所述方法包括以下步骤:

步骤1,确定主机四旋翼的当前位置、目标位置、环境中障碍物的位置及大小,建立环境模型,并初始化人工势场法的参数;

步骤2,利用斥力函数和引力函数分别计算障碍物对主机四旋翼的斥力以及目标点对主机四旋翼的引力,同时计算斥力和引力的角度;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111048914.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top