[发明专利]一种融合知识图谱和时序特征的可解释兴趣点推荐方法有效

专利信息
申请号: 202110972282.1 申请日: 2021-08-24
公开(公告)号: CN113656709B 公开(公告)日: 2023-07-25
发明(设计)人: 申德荣;石美惠;寇月;聂铁铮 申请(专利权)人: 东北大学
主分类号: G06F16/9537 分类号: G06F16/9537;G06F16/36;G06N3/0442;G06N3/048;G06N3/08
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 梁焱
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 融合 知识 图谱 时序 特征 可解释 兴趣 推荐 方法
【说明书】:

发明公开了一种融合知识图谱和时序特征的可解释兴趣点推荐方法,涉及兴趣点推荐技术领域。该方法主要包括三个部分:知识图谱构建、实体间的潜在关系表示学习及用户行为的时序动态性捕捉、输出可解释的推荐结果,实体间的潜在关系表示学习是基于构建的知识图谱实现的,通过捕捉实体间的多条潜在关系路径,学习实体间的潜在关系表示,并进一步利用用户的签到序列,即融合路径静态信息和时序动态信息来学习用户偏好,最后基于学习到的用户偏好为用户推荐兴趣点,并提供推荐结果的解释。本发明能够在保证推荐精准度的同时,生成可解释的推理路径,通过提供推荐结果的解释,保证推荐方法的透明度,进而提高用户对推荐结果的信任水平和接受度。

技术领域

本发明属于兴趣点推荐技术领域,主要涉及一种融合知识图谱和时序特征的可解释兴趣点推荐方法。

背景技术

随着移动互联网技术的飞速发展,基于位置的社交网络平台应运而生并受到广泛关注,例如Foursquare、Gowalla和Facebook Places等。基于位置的社交网络将网络空间与物理世界联系在一起,使用户可以通过发布兴趣点(如餐厅、商场等)签到来分享生活经历,从而产生海量移动数据。这些移动数据为分析用户的行为和偏好提供了机遇,并催生了对兴趣点推荐的研究。

目前,研究者们提出了大量兴趣点推荐方法。现有方法大致可分为两类,分别为基于协同过滤的兴趣点推荐方法和基于深度学习的兴趣点推荐方法。与基于协同过滤的兴趣点推荐方法相比,基于深度学习的兴趣点推荐方法能够利用复杂的网络模型挖掘用户移动行为中的偏好特征,有效提高了推荐结果的精确性。然而,现有的兴趣点推荐方法大多仅给出推荐却未提供推荐结果的解释,无法保证推荐系统的透明度,进而影响用户对推荐结果的信任水平和接受度。为提高推荐结果的说服力,进一步增加推荐系统的可信度,给用户提供推荐兴趣点的支持性信息和证据是至关重要的。

可解释推荐对于用户移动行为分析是十分必要的,已有针对可解释兴趣点推荐的研究工作主要分为基于嵌入(Embedding-based)和基于路径(Path-based)的方法。基于嵌入的方法侧重于对语义关联进行建模,使相似的实体具有较小的表示距离,但缺乏发现多跳关系路径的能力。与基于嵌入的方法相比,基于路径的方法能够有效挖掘实体间的多跳关系,但可解释兴趣点推荐仍然存在许多挑战。一方面,现有方法在构建知识图谱时未利用兴趣点的空间信息,而空间信息对于学习用户个性化偏好起着至关重要的作用;另一方面,利用知识图谱的静态信息虽然提高了模型的可解释性,却无法捕捉用户移动行为的动态性,影响了兴趣点推荐的性能。

发明内容

针对上述现有技术存在的不足,本发明提供一种融合知识图谱和时序特征的可解释兴趣点推荐方法,旨在有效融合知识图谱的结构化信息和用户的签到序列,挖掘用户偏好来进行兴趣点推荐,并根据路径推理促进推荐解释生成。

本发明的技术方案为:

一种融合知识图谱和时序特征的可解释兴趣点推荐方法,该方法包括:

步骤I:对数据集中的初始数据空间进行划分,获得的每个子空间视为一个区域,进而根据兴趣点的原始空间信息获取兴趣点的所属区域,将兴趣点的原始空间信息转换为粗粒度的空间信息;

步骤II:整合用户-兴趣点的交互信息和兴趣点的粗粒度的空间信息,构建知识图谱;

所述知识图谱包含的实体有:用户、兴趣点、空间信息,包含的关系有:用户-兴趣点、兴趣点-区域;其中用户-兴趣点代表用户与兴趣点之间存在历史交互;兴趣点-区域代表兴趣点的位置位于某个区域内;

步骤III:基于知识图谱中的路径静态信息捕捉实体之间的潜在关系,并融合用户签到序列的时序动态信息来学习用户偏好;

所述实体间的潜在关系通过实体间的潜在关系路径体现,所述实体间的潜在关系路径,是指知识图谱中连接两个实体的多跳路径,能够表示两个实体间的潜在关系,包括用户与兴趣点之间的潜在关系路径、兴趣点与兴趣点之间的潜在关系路径两个类别;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110972282.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top