[发明专利]基于图学习的特征工程的系统和方法在审

专利信息
申请号: 202110703028.1 申请日: 2021-06-24
公开(公告)号: CN113850393A 公开(公告)日: 2021-12-28
发明(设计)人: 夏应龙;胡卢慧 申请(专利权)人: 脸谱公司
主分类号: G06N20/00 分类号: G06N20/00;G06N3/04;G06F16/901;G06F16/903
代理公司: 北京安信方达知识产权代理有限公司 11262 代理人: 宁晓;杨明钊
地址: 美国加利*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 学习 特征 工程 系统 方法
【说明书】:

公开了基于图学习的特征工程的系统和方法。在一个实施例中,计算系统可以接收与机器学习模型相关联的查询信息。该系统可以访问定义在多个机器学习模型和机器学习模型的多个特征之间的关系的知识图。该系统可以基于知识图和查询信息来确定指示机器学习模型和知识图中的特征的一个或更多个特征之间的相关性的一个或更多个相关性度量。该系统可以基于一个或更多个相关性度量和一个或更多个特征来确定机器学习模型的一个或更多个推荐特征。

技术领域

本公开大体上涉及机器学习模型,尤其涉及基于图学习的特征工程。

背景

可以包括社交网络网站或移动应用的社交网络系统可以使它的用户(例如个人或组织)能够与它交互以及通过它彼此交互。社交网络系统可以利用来自用户的输入来在社交网络系统中创建并存储与用户相关联的用户简档(user profile)。用户简档可以包括用户的人口统计信息、通信渠道信息以及关于个人兴趣的信息。社交网络系统还可以用来自用户的输入创建并存储用户与社交网络系统的其他用户的关系的记录,以及提供服务(例如,发帖墙(wall post)、照片分享、事件组织、消息传递、游戏或广告)以便于在用户之间或当中的社会互动。

社交网络系统可以通过一个或更多个网络向用户的移动设备或其他计算设备发送与它的服务相关的内容或消息。用户还可以在用户的移动设备或其他计算设备上安装软件应用,用于访问用户的用户简档和在社交网络系统内的其他数据。社交网络系统可以生成一组个性化的内容对象以显示给用户,例如关连(connect)到该用户的其他用户的汇集的动态(story)的动态消息(newsfeed)。

特定实施例的概述

本文描述的特定实施例涉及使用知识图和图学习来为机器学习(ML)模型推荐特征的系统和方法。该系统可以从另一计算系统或从用户输入接收多个ML模型,这些模型具有基于相关的域知识确定的关联特征。该系统可以生成知识图来表示这些ML模型和这些特征之间的关系,这些关系是基于相关的域知识或基于通过图学习推断的相关性来确定的。知识图可以包括多个节点和连接这些节点的多条边。每个节点可以代表一个ML模型或特征。每条边可以表示由该边连接的两个节点之间的关系,并且可以与用于表征所表示的关系的权重相关联。ML模型和特征可以与用于表征相应ML模型或特征的相应标签相关联。该系统可以使用图神经网络、基于机器学习的智能逻辑或基于规则的智能逻辑来基于知识图学习关于这些模型和特征的新知识(例如,关系、相似性、重要性、关联性、相关性)。例如,知识图中的特征可以与描述特征组、特征层、特征储存器(store)或相关问题域的特征属性相关联。可以基于相关联的特征属性来标记特征。该系统可以在由N个特征标签定义的N维空间中将特征聚类成多个特征类别。然后,系统可以基于N维空间中的聚类结果来确定这些特征之间的相似性和关联性。重复的特征可以合并在一起。作为另一个示例,系统可以基于这两个模型共享的特征来确定这两个模型之间的关联性。作为示例,系统可以基于特征与相同或相似问题域中的另一模型的关系来确定特征与特定问题域的模型的关联性。

系统可以基于通过图学习学习的新知识来动态更新知识图。系统可以添加新的边来表示关联节点之间新发现的关系。在针对特定ML模型的特征工程过程期间,系统可以接收与该特定ML模型相关联的查询信息,并且可以使用知识图来生成针对该特定ML模型的特征推荐。推荐的特征可以基于它们与该特定ML模型的关联性来确定,该关联性是通过图学习从知识图中推断出的。为了改进知识图中的ML模型,系统可以使用新学习的知识来为该模型推荐新的特征,以提高该ML模型的有效性和精度。该系统还可以将反映相应模型推理(例如,曝光率、预测精度)在各自应用中的重要性或有效性的推理值度量作为输入。推理值度量可用于确定或更新知识图中边的权重。新的或现有的ML模型的推荐特征可以基于相应的推理值度量来评估。结果,该系统可以使用知识图和图学习为自动化特征工程提供有效的解决方案。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于脸谱公司,未经脸谱公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110703028.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top